Project description:Background Clade 2.3.4.4b highly pathogenic avian influenza (HPAI) H5N1 viruses are widely circulating in North America with unprecedented transmission into novel host species. A high incidence of neurologic disease is observed in carnivores infected with clade 2.3.4.4b HPAI H5N1 viruses and historical outbreaks of HPAI H5N1 in humans are also associated with neurologic complications, raising concerns about neurotropism and neurovirulence of clade 2.3.4.4b HPAI H5N1 viruses. Methods We analyzed virus replication kinetics, cellular tropism, and host responses to infection in human cerebral organoids (hCOs) inoculated with clade 2.3.4.4b HPAI H5N1 viruses compared to a historical clade 1 HPAI H5N1 virus and a seasonal influenza A virus. Results HPAI H5N1 viruses replicated to high titers in hCOs, but replication of the seasonal influenza A virus was not detected. Viral antigen and RNA were detected primarily in neuron- and astrocyte-like cells. Interferon responses to infection with HPAI H5N1 viruses were observed in a small population of bystander cells. Higher levels of cell death and proinflammatory cytokines and chemokines were observed in organoids inoculated with the historical HPAI H5N1 isolate. Conclusions Clade 2.3.4.4b HPAI H5N1 viruses exhibit similar neurotropism compared to a historical clade 1 HPAI H5N1 virus. Lower levels of cell death and inflammatory cytokine production induced by clade 2.3.4.4b viruses may indicate reduced neuropathogenic potential of these viruses in humans.
Project description:The H5N1 avian influenza virus clade 2.3.4.4b outbreak represents a major pandemic threat for humans, with some reported cases of severe and fatal respiratory illness. A key unanswered question is the pathogenesis of severe H5N1 disease following respiratory infection. In this study, we explored mechanisms of pathogenesis of severe H5N1 disease in cynomolgus and rhesus macaques following infection with the H5N1 isolate A/Texas/37/2024 (huTX37-H5N1). Cynomolgus macaques developed severe pneumonia that was lethal in 100% of macaques by 7 days post-infection. By contrast, rhesus macaques demonstrated dose-dependent mortality, and surviving animals showed protective immunity against high-dose re-challenge. A multi-omics analysis demonstrated that H5N1 infection was characterized by robust induction of proinflammatory cytokines, innate immune cells, complement, coagulation, apoptosis, and immune exhaustion pathways. Taken together, our data indicate inflammation and immune dysregulation as key mechanisms of H5N1 pathogenesis in nonhuman primates.
Project description:The 2024 outbreak of highly pathogenic avian influenza virus (HPAIV) H5N1 in U.S. dairy cattle presented an unprecedented scenario where the virus infected bovine mammary glands and was detected in milk, raising serious concerns for public health and the dairy industry. Unlike previously described subclinical influenza A virus (IAV) infections in cattle, H5N1 infection induced severe clinical symptoms, including respiratory distress, mastitis, and abnormal milk production. To understand the host immune responses and changes particularly in the mammary gland, we performed scRNA-seq analysis on bovine milk somatic cells (bMSC) in-vitro infected with H5N1 isolate from dairy farm. We identified ten distinct cell clusters and observed a shift toward type-2 immune responses, characterized by T-cells expressing IL13 and GATA3, and three different subtypes of epithelial cells based on expression of genes associated with milk production. Our study revealed temporal dynamics in cytokine expression, with a rapid decline in luminal epithelial cells and an increase in macrophages and dendritic cells, suggesting a role in increased antigen presentation. These findings indicate that bovine H5N1 infection triggers complex immune responses involving both pro-inflammatory and regulatory pathways. This research fills a critical gap in understanding the immune responses of bovine mammary glands to H5N1 infection and highlights the need for further investigation into therapeutic strategies for managing such outbreaks.
Project description:Experimental spillover of H5N1 clade 2.3.4.4b high pathogenicity avian influenza virus from gulls to minks reveals mammalian adaptation without spillback potential
| PRJEB95805 | ENA
Project description:Oseltamivir and baloxavir monotherapy and combination therapy efficacy against clade 2.3.4.4b A(H5N1) influenza virus infection in ferrets