Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data.
Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data.
Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data.
Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data. Note: All samples in SRA were assigned the same sample accession (SRS300834). This is incorrect as there are different samples, hence “Source Name” was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data. Note: All samples in SRA were assigned the same sample accession (SRS302562). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:Maize exhibits levels of structural variation (SV) of non-repeat sequences that are unprecedented among higher eukaryotes. This SV includes hundreds of copy number variants (CNVs) and thousands of presence/absence variants (PAVs). Many of the PAVs contain intact, expressed, single-copy genes that are present in one haplotype but absent from another. The goal of this project is to test the hypothesis that differences in gene copy number (both gains and losses) contribute to the extraordinary phenotypic diversity and plasticity of maize. Maize is a good model for these studies because it exhibits a rapid decay of linkage disequilibrium (LD) and because a draft genome sequence of the B73 inbred and mapping populations are available. As a first step, the Zeanome, a near-complete set of genes present in B73, other maize lines and the wild ancestor of maize (teosinte), is being defined using transcriptomic data. Note: All samples in SRA were assigned the same sample accession (SRS302561). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:The contribution of epigenetic alterations to natural variation for gene transcription levels remains unclear. In this study, we investigated the functional targets of the maize chromomethylase ZMET2 in multiple inbred lines to determine whether epigenetic changes conditioned by this chromomethylase are conserved or variable within the species. Gene expression microarrays were hybridized with RNA samples from the inbred lines B73 and Mo17, and from near-isogenic derivatives containing the loss-of-function allele zmet2-m1. A set of 126 genes that displayed statistically significant differential expression in zmet2 mutants relative to wild-type plants in at least one of the two genetic backgrounds were identified. Analysis of the transcript levels in both wild-type and mutant individuals revealed that only 10% of these genes were affected in zmet2 mutants in both B73 and Mo17 genetic backgrounds. Over 80% of the genes with expression patterns affected by zmet2 mutations display variation for gene expression between wild-type B73 and Mo17 plants. Further analysis was performed for seven genes that were transcriptionally silent in wild-type B73, but expressed in B73 zmet2-m1, wild-type Mo17 and Mo17 zmet2-m1 lines. Mapping experiments confirmed that the expression differences in wild-type B73 relative to Mo17 inbreds for these genes were caused by cis-acting regulatory variation. Methylation-sensitive PCR and bisulphite sequencing demonstrated that for five of these genes the CpNpG methylation in the wild-type B73 genetic background was substantially decreased in the B73 zmet2-m1 mutant and in wild-type Mo17. A survey of eight maize inbreds reveals that each of these five genes exhibit transcriptionally silent and methylated states in some inbred lines and unmethylated, expressed states in other inbreds, providing evidence for natural variation in epigenetic states for some maize genes. Keywords: mutant versus wild-type comparison in two inbred genotypes