Project description:As the passage number increases, the spontaneous aggregation phenomenon of TCCF2022 cells gradually weakens and eventually disappears, and occasional instances of post-passage cells being unable to proliferate are observed. This suggests that the characteristics of the cells may have changed during the culture process.We found that when individual factors were used to induce TCCF2022, on the third day after treatment with 5μM Forskolin, TCCF2022 cells regained the ability to form cell aggregates, and alkaline phosphatase detection was also positive. Therefore, we need to determine the possible mechanism of this state recovery through RNA-seq.
Project description:Knocked-down of P70S6K in zebrafish (double knockdown of rps6kb1/2) using embryo Cas9/gRNA RNP injections followed by phosphoproteomics of caudal fin.
Project description:Adult zebrafish are able to regenerate many organs such as their caudal fin in only few days post amputation. To explore the landscape and dynamic of the genes involed in regeneration, we performed a global transcriptomic analysis using RNA-seq during zebrafish caudal fin regeneration.
Project description:single cell transcriptomics of preinjury and regenerating caudal fin tissue revealed cell type consistency and cell-type-specific genetic program during regeneration
Project description:Previous studies of zebrafish caudal fin regeneration have shown that multiple genetic programs are moduled through regulatory factors. MicroRNAs are short highly conserved non-coding genes that suppress expression of target genes and thereby control multiple genetic programs. Given their important regulatory roles and evolutionary conservation, we hypothesize that microRNAs define a conserved genetic regulatory circuit important for appendage regeneration. We characterized microRNA expression during zebrafish caudal fin regeneration using small RNA sequencing. The stages of caudal fin regeneration were assayed for mRNA expression using mRNA sequencing. Small RNA and mRNA gene expression profiling during 0 and 4 days post amputation.
Project description:Previous studies of zebrafish caudal fin regeneration have shown that multiple genetic programs are moduled through regulatory factors. MicroRNAs are short highly conserved non-coding genes that suppress expression of target genes and thereby control multiple genetic programs. Given their important regulatory roles and evolutionary conservation, we hypothesize that microRNAs define a conserved genetic regulatory circuit important for appendage regeneration. We characterized microRNA expression during zebrafish caudal fin regeneration using small RNA sequencing. The stages of caudal fin regeneration were assayed for mRNA expression using mRNA sequencing.
Project description:Purpose: The goal of this study was to establish the first detailed cell atlas of the regenerating caudal fin of zebrafish larvae. Intact and regenerating caudal fin were used for single-cell RNA-sequencing with the aim to provide the first integrated model of epimorphic regeneration in zebrafish larvae and demonstrate the diversity of the cells required for blastema formation. Methods: 150 of regenerating caudal fin (cut) and intact caudal fine (uncut) samples were dissociated and loaded into the 10x Genomics Chromium Platform, and sequenced using Illumina NovaSeq 6000. Conclusion: Our study constitutes a resource of the gene expression profile in intact and regenerating caudal fin of zebrafish larvae. We report the application of single-molecule-based sequencing technology for high-throughput profiling of both intact (uncut) and regenerating caudal fin samples (cut) at 24hpA. We confirmed the presence of macrophage subsets, previously described by our group to govern zebrafish fin regeneration, and identified a novel blastemal cell population.
Project description:Genome-wide microarray analysis of the effects of swim-training on caudal fin development in zebrafish larvae. Zebrafish were subjected to swim-training from 5 days post fertilization (dpf) until 10 dpf. Subsequently, we performed a genome-wide microarray analysis on the caudal fins of control and trained fish at 10 dpf. The goal of the project was to investigate the effects of swim-training on the gene expression level during caudal fin development in zebrafish larvae.