ABSTRACT: Prospective genomic surveillance reveals insights into antimicrobial resistance and lineage diversity of uropathogen in older adults in Queensland
Project description:This study aimed to investigate the effects of a multidomain intervention on gene expression profile of older adults with cognitive frailty in Selangor, Malaysia, using mRNA gene sequencing. The intervention included a combination of dietary changes, exercise, and psychosocial support. By analyzing gene expression profile in both groups, this study explores how multidomain interventions may influence mrna in older adults. The findings could provide insights into the role of lifestyle factors on the CF in aging populations.
Project description:Streptococcus pneumoniae colonization in the upper respiratory tract is linked to pneumococcal disease development, predominantly affecting young children and older adults. As the global population ages and comorbidities increase, there is a heightened concern about this infection. We investigated the immunological responses of older adults to pneumococcal controlled human infection by analysing the cellular composition and gene expression in the nasal mucosa. Our comparative analysis with data from a concurrent study in younger adults revealed distinct gene expression patterns in older individuals susceptible to colonization, highlighted by neutrophil activation and elevated levels of CXCL9 and CXCL10. Unlike younger adults challenged with pneumococcus, older adults did not show recruitment of monocytes into the nasal mucosa following nasal colonization. However, older adults who were protected from colonization showed increased degranulation of CD8+ T cells, both before and after pneumococcal challenge. These findings suggest age-associated cellular changes, in particular enhanced mucosal inflammation, that may predispose older adults to pneumococcal colonization.
Project description:Seasonal influenza contributes to a substantial disease burden annually, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the US. 90% of the annual mortality from influenza occurs in people over the age of 65. While influenza vaccination is the best protection against the virus, it is less effective for the elderly. This may be due to differences in the quantity or type of B cells induced by vaccination in older individuals. To investigate this possibility, we leveraged recent development in single-cell technology that allows for simultaneous measurement of both gene expression profile and the B cell receptor (BCR) at single-cell resolution. Pre- and post-vaccination peripheral blood B cells were sorted from three young and three older adults who responded to the inactivated influenza vaccine and were profiled using single-cell RNAseq with paired BCR sequencing. At pre-vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The response involved a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups. The response in young adults was dominated by expansion in plasmablasts, while the response in older adults also involved activated B cells. We observed a consistent change in gene expression in plasmablasts after vaccination between age groups but not in the activated B cells. These quantitative and qualitative differences in the B cell response may provide insights into the age-related change of influenza vaccination response.
Project description:Seasonal influenza contributes to a substantial disease burden annually, resulting in approximately 10 million hospital visits and 50 thousand deaths in a typical year in the US. 90% of the annual mortality from influenza occurs in people over the age of 65. While influenza vaccination is the best protection against the virus, it is less effective for the elderly. This may be due to differences in the quantity or type of B cells induced by vaccination in older individuals. To investigate this possibility, we leveraged recent development in single-cell technology that allows for simultaneous measurement of both gene expression profile and the B cell receptor (BCR) at single-cell resolution. Pre- and post-vaccination peripheral blood B cells were sorted from three young and three older adults who responded to the inactivated influenza vaccine and were profiled using single-cell RNAseq with paired BCR sequencing. At pre-vaccination, we observed a higher somatic hypermutation frequency and a higher abundance of activated B cells in older adults than in young adults. Following vaccination, young adults mounted a more clonal response than older adults. The response involved a mix of plasmablasts, activated B cells, and resting memory B cells in both age groups. The response in young adults was dominated by expansion in plasmablasts, while the response in older adults also involved activated B cells. We observed a consistent change in gene expression in plasmablasts after vaccination between age groups but not in the activated B cells. These quantitative and qualitative differences in the B cell response may provide insights into the age-related change of influenza vaccination response.