Project description:Intramuscular fat (IMF) serves as a crucial economic indicator of meat quality. To investigate the heterogeneity of IMF composition and its regulatory mechanisms in Xingguo (XG) geese with varying IMF levels, lipidomics and transcriptomics were utilized. The analysis of lipid profiles revealed that the predominant lipids in the IMF of XG geese were glycerophospholipids (GPs), followed by glycerides (GLs). Interestingly, the low-IMF group exhibited an increase in GPs, specifically phosphatidylethanolamines (PEs) and phosphatidylcholines (PCs), while the high-IMF group showed elevated levels of triacylglycerols (TAGs). Transcriptomic analysis indicated that genes related to extracellular matrices (ECM)-receptor interactions, focal adhesion, mitogen-activated protein kinase (MAPK), and forkhead transcription factors O (FoxO) signaling pathways were upregulated in the low-IMF group. In contrast, genes involved in metabolic processes were more pronounced in the high-IMF group. A comprehensive analysis combining lipidomics and transcriptomics identified CD36, fatty acid-binding protein 5 (FABP5), troponin I2 (TNNI2), and coronin-6 isoform X1 (CORO6) as essential regulators influencing IMF accumulation in XG geese. This research emphasizes the significant lipids, genes, and signaling pathways that play roles in IMF accumulation, providing a theoretical basis for enhancing the meat quality of XG geese.
2025-03-10 | GSE291139 | GEO
Project description:Transcriptome analysis of pitaya fruit with different color and texture
Project description:the current study paints a thorough transcriptome profiles of different skin color groups (white, yellow and brown) in celestial goldfish, and several candidate genes were selected as important functional genes involved in the color variation
Project description:Petal is not only the target of selection by horticulturalists to enhance the ornamental value of plants but also emerged as a unique model system for plant organogenesis studies. It is known that three major groups of pigments, betalains, carotenoids and anthocyanins, are responsible for the attractive natural display of flower colors. While carotenoids and betalains generally yield yellow or red colors, anthocyanins confer a diverse range of color from orange to red to violet and blue. In this study, we collected 11 species (Erysimum cheiri, Malcolmia maritime, Brassica oleracea, Raphanus sativus, Orychophragmus violaceus, Eruca sativa, Orychophragmus violaceus, Iberis amara, Aubrieta x cultorum, Lobularia maritime, Matthiola incana) belong to different tribe in Brassicaceae family with varied flower color and performed petal transcriptome analysis. de novo transcriptome assembly showed that average length of the contigs varied from 631bp in O. violaceus to 1212bp in Matthiola incana which indicated that the complexity of the genomes are different much. Protein homology between these species and those sequenced species in Brassicaceae family are consistent with the known phylogenetic relationships. However, O. violaceus has closer relationships with Sisymbrium irio than expected Brassica species. Clustering analysis of genes in anthocyanin and carotenoids synthesis pathway indicated that while silence or low expression of CCD4 (Carotenoid Cleavage Dioxygenase 4) leading to the yellow color formation in different species, purple or red color variation might result from different genes expression variation. These results not only provide transcriptome data for petal development study but also provide useful information for Brassica flower improvement for ornamental purpose.
Project description:The experiment was conducted at the Kołuda Wielka Experimental Station of the National Research Institute of Animal Production (Kołuda Wielka, Poland). All birds were kept in semi-intensive rearing system according to the oat-fattening technology. At 15.5 weeks of age, 8 geese were selected and divided into two groups (n=4) depending on final body weight. Group I (light) were geese with the flock average weight of 7,10 kg, group II (heavy) consisted of geese with above-average growth potential, which achieved a body weight of 7,95 kg during the same time. Up to 20 min after slaughter, the whole pituitary and hypothalamus were collected and stabilized in RNAlater solution to RNA isolation purpose.
2021-03-02 | GSE167941 | GEO
Project description:Different Guangdong local geese resequencing data
Project description:Lion-head goose is the only large goose species in China, and it was one of the largest goose species in the world. Our previous study firstly reported a chromosome-level genome assembly of Lion-head goose (Anser cygnoides), a native breed in South China, through the combination of PacBio, Bionano, and Hi-C technologies. The fat content of foie gras is augmented during its preparation due to the special feeding regimen. Lion-head geese have a strong tolerance of massive energy intake and show a priority of fat accumulation in liver tissue. In this study, we studied for the first time the important differential genes that regulate fatty liver in Lion-head goose. After high-intake feeding, the fatty livers of Lion-head geese were distinctly characterized. The revelation of gene regulation is an important basis for the study of liver development and molecular characteristics for the Lion-head goose. To analyze the excellent fatty liver performance of Lion-head goose at the molecular level, we performed whole transcriptome analysis by high-throughput RNA sequencing to analyze the key regulatory genes that determine the fatty livers in high-intake feeding group compared with the normal livers in normally-fed Lion-head geese. We identified 716 differentially expressed mRNAs, 145 differentially expressed circRNAs, and 39 differentially expressed lncRNAs in the fatty livers in high-intake feeding group compared with the normal livers in normally-fed Lion-head geese, including upregulated and downregulated genes, respectively. GO enrichment analysis showed that these genes were significantly enriched in molecular function, involved in extracellular regions, DNA-binding transcription factor activity, extracellular matrix, heme binding and other life activities. We chose differentially expressed genes involved in either upregulation or downregulation, and we additionally confirmed the accuracy of sequencing at the RNA level. In summary, our research suggested that these differentially expressed genes may play important roles in fatty liver development in Lion-head goose. However, the functions and mechanisms of these significantly differentially expressed genes should be investigated in future studies.
2023-11-16 | GSE243829 | GEO
Project description:Different shell color LncRNA transcriptome of Ruditapes philippinarum
| PRJNA910370 | ENA
Project description:Watermelon Peel Background Color Transcriptome at Different Stages