Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.
Project description:Streptococcus suis is an important emerging worldwide pig pathogen and zoonotic agent with rapid evolution of virulence and drug resistance. Licochalcone A, used in traditional Chinese medicine, exhibits antimicrobial, antioxidant and anti-inflammatory activities. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of Streptococcus suis 05ZYH33 treated by subinhibitory concentration of licochalcone A. 132 genes were differentially regulated upon liochalcone A treatment, including 78 genes up-regulated and 54 genes down-regulated which included many central biological functions such as metabolism, transcription and translation. We tried to investigate the antimicrobial mechanism of licochalcone A in the aspect of bacterial cell cycle control. Our analysis indicated that licochalcone A might inhibit the growth of S. suis by controlling the replication initiation and cell division through amino acid metabolism.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Streptococcus suis is a major pig pathogen as well as an emerging zoonotic pathogen. We studied the generic and adaptive resistance response of S. suis upon exposure to sub-lethal concentrations of the human cathelicidin LL-37. We aimed to search for inducible mechanisms of resistance to AMPs as well as induction of virulence gene expression upon exposure to AMPs, in order to gain insights into host-derived factors that might mediate S. suis pathogenesis.
Project description:Streptococcus suis is a major pig pathogen as well as an emerging zoonotic pathogen. In a previous study (Zaccaria et al. Plos One DOI: 10.1371/journal.pone.0099394) we identified the natural pheromone-induced competence system of S. suis. To identify the mechanisms enabling competence, gene expression analysis of bacteria induced or not for competence, and in presence or absence of exogenous DNA, was assessed at 5, 15 and 45 minutes after pheromone addition. The transcriptomes showed how competence was induced and eventually shut down, and which metabolic pathways were repressed or induced when competence was active or shut down.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Comparative genomic analysis on the 31 S. suis strains of different serotypes and ST types through tilling arrays.
Project description:Streptococcus suis is a major pig pathogen as well as an emerging zoonotic pathogen. Previous work has demonstrated that the S. suis extracellular amylopullulanase enzyme (ApuA) that degrades {alpha}-glucans also functions as an adhesin for porcine epithelial cells. To identify the mechanisms linking carbohydrate metabolism and virulence, we first compared the transcriptome of S. suis in minimal medium supplemented with glucose to minimal medium containing a complex carbohydrate pullulan as a carbon source. The relative expression of eighteen virulence genes including suilysin and apuA was increased during growth in presence of pullulan, compared to growth in glucose. Increased virulence potential of S. suis grown in pullulan was demonstrated using hemolytic assays and increased adhesion and invasion of porcine epithelial cells in vitro. A metabolic map of S. suis was generated and combined with transcriptome data to visualize the metabolic adaption of S. suis during adhesion and invasion of the porcine epithelial cells representing an in vitro model of infection. The role of carbon catabolite control in virulence gene regulation was investigated and the molecular mechanism of transcriptional regulation was elucidated for apuA. We demonstrate that relief of CcpA repression is a crucial transcriptional control mechanism linking carbohydrate mechanism and virulence. The model for the transcriptional regulation of two important virulence factors apuA and suilysin was verified by qPCR analysis of gene expression in S. suis recovered from the organs and blood of infected pigs.
Project description:Streptococcus suis serotype 2 (SS2), an important zoonotic agent, is notorious for causing contagious porcine diseases and human infection. The two outbreaks in China (in 1998 and in 2005) have caused serious economic losses in the pig industry and posed public health for its new toxin shock symptoms (TSS). However, the molecular mechanism of SS2 pathogenicity is still poorly understood. In order to get insights into pathogenecity of SS2, eighteen SS2 strains of different virulence and sources have been subjected to whole genome comparison by NimbleGen CGS arrays