Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]-benzene to [14C]-carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism and [14C]-benzoate was produced from [14C]-benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not up-regulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- versus benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
Project description:Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [14C]-benzene to [14C]-carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism and [14C]-benzoate was produced from [14C]-benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not up-regulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- versus benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus. This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.