Project description:Morphologic sex differences between males and females typically emerge after the primordial germ cell migration and gonad formation, although sex is determined at fertilization based on chromosome composition. A key debated sexual difference is the embryonic developmental rate, with in vitro produced male embryos often developing faster. However, the molecular mechanisms driving early embryonic sex differences remain unclear. To investigate the transcriptional sex difference during early development, in vitro produced bovine blastocysts were collected and sexed by PCR. A significant male-biased development was observed in expanded blastocysts. Ultra-low input RNA-seq analysis identified 837 DEGs, with 231 upregulated and 606 downregulated in males. Functional enrichment analysis revealed male-biased DEGs were associated with metabolic regulation, whereas female-biased DEGs were related to female gonad development, sex differentiation, inflammatory pathways, and TGF-beta signaling. Comparing X chromosome and autosome expression ratio, we found that female-biased DEGs contributed to the higher X-linked gene dosage, a phenomenon not observed in male embryos. Moreover, we identified the sex-biased transcription factors and RNA-bind proteins, including pluripotent factors such as SOX21 and PRDM14, and splicing factors FMR1 and HNRNPH2. Additionally, we revealed 1,555 significantly sex-biased differential alternative splicing (AS), predominantly skipped exons, mapped to 906 genes, with 59 overlapping with DEGs enriched in metabolic and autophagy pathways. By incorporating novel isoforms from long reads sequencing, we identified 1,151 sex-biased differentially expressed isoforms (DEIs) associated with 1,017 genes. Functional analysis showed that female-biased DEIs were involved in the negative regulation of transcriptional activity, while male-biased DEIs were related to energy metabolism. Furthermore, we identified sex-biased differential exon usage in DENND1B, DIS3L2, DOCK11, IL1RAPL2, and ZRSR2Y, indicating their sex-specific regulation in early embryo development. This study provided a comprehensive analysis of transcriptome differences between male and female bovine blastocysts, integrating sex-biased gene expression, alternative splicing, and isoform dynamics. Our findings indicate that enriched metabolism processes in male embryos may contribute to the faster developmental pace, providing insights into sex-specific regulatory mechanisms during early embryogenesis.
Project description:Sexual dimorphism in mammals is mostly attributable to sex-related hormonal differences in fetal and adult tissues; however, this may not be the sole determinant. Though genetically-identical for autosomal chromosomes, male and female preimplantation embryos could display sex-specific transcriptional regulation which can only be attributted to the differences in sexual chromosome dosage. We used microarrays to analyze sex-related transcriptional differences at the blastocyst stage. Day 7 bovine in vitro produced bovine blastocysts produced with sorted semen from 3 different bulls. Pooled RNA from 60 blastocysts of one sex and produced with one bull was used per chip. Three replicates of each sex per bull. In total, 18 Bovine GeneChip (Affymetrix) were used (3 replicates X 3 bulls X 2 sexes).
Project description:Changes in gene expression induced by the Cryotop vitrification procedure in bovine blastocysts using Agilent EmbryoGENE microarray slides. Bovine in vitro-produced embryos at the blastocyst stage (144 to 156 hours post insemination) were vitrified using the Cryotop system and compared with non-vitrified (control) embryos. After vitrification, the embryos were warmed and cultured for an additional 4 hours. Embryos that re-expanded or developed to the expanded blastocyst stage were used for microarray analysis.
Project description:Investigatation into how genes with sex-differential expression profiles are distributed among the chromosomes in Drosophila. Assayed the expression of 14,142 predicted transcripts in competitive hybridizations and found a dramatic underrepresentation of X-chromosome genes showing high relative expression in male. This is the first report of sex-biased expression of the full (predicted) genome. Findings indicate that there is significant sex-biased expression, especially in gonads. Genes showing sex-biased gene expression profiles are likely to have sex-biased functions. Keywords: other
Project description:Sexual dimorphism depends on sex-biased gene expression, but the contributions of microRNAs (miRNAs) have not been globally assessed. We therefore produced an extensive small RNA sequencing dataset to analyse male and female miRNA expression profiles in mouse, opossum and chicken. Our analyses uncovered numerous cases of somatic sex-biased miRNA expression, especially in the mouse heart and liver. Sex-biased expression is explained by miRNA-specific regulation, including sex-biased chromatin accessibility at promoters, rather than piggybacking of intronic miRNAs on sex-biased protein-coding genes. In mouse, but not opossum and chicken, sex bias is coordinated across tissues such that autosomal testis-biased miRNAs tend to be somatically male-biased, whereas autosomal ovary-biased miRNAs are female-biased, possibly due to broad hormonal control. In chicken, which has a Z/W sex chromosome system, expression output of genes on the Z chromosome is expected to be male-biased, since there is no global dosage compensation mechanism that restores expression in ZW females after almost all genes on the W chromosome decayed. Nevertheless, we found that the dominant liver miRNA, miR-122-5p, is Z-linked but expressed in an unbiased manner, due to the unusual retention of a W-linked copy. Another Z-linked miRNA, the male-biased miR-2954-3p, shows conserved preference for dosage-sensitive genes on the Z chromosome, based on computational and experimental data from chicken and zebra finch, and acts to equalise male-to-female expression ratios of its targets. Unexpectedly, our findings thus establish miRNA regulation as a novel gene-specific dosage compensation mechanism.
Project description:Changes in gene expression induced by the Cryotop vitrification procedure in bovine blastocysts using Agilent EmbryoGENE microarray slides. Bovine in vitro-produced embryos at the blastocyst stage (144 to 156 hours post insemination) were vitrified using the Cryotop system and compared with non-vitrified (control) embryos. After vitrification, the embryos were warmed and cultured for an additional 4 hours. Embryos that re-expanded or developed to the expanded blastocyst stage were used for microarray analysis. Four pools of vitrified embryos were hybridized against four pools of control embryos in a dye-swap design.
Project description:Sexual dimorphism in mammals is mostly attributable to sex-related hormonal differences in fetal and adult tissues; however, this may not be the sole determinant. Though genetically-identical for autosomal chromosomes, male and female preimplantation embryos could display sex-specific transcriptional regulation which can only be attributted to the differences in sexual chromosome dosage. We used microarrays to analyze sex-related transcriptional differences at the blastocyst stage.
Project description:Although not all sex-dependent gene expression is adaptive, it is likely an important genomic mechanism that allows each sex to independently adapt to environmental changes. Among Drosophila species, sex-biased genes display remarkably consistent evolutionary patterns; male-biased genes evolve faster than unbiased genes in both coding sequence and expression level, suggesting sex-differences in selection through time. However, comparatively little is known of the evolutionary process shaping sex-biased expression within species. Latitudinal clines offer an opportunity to examine how changes in key ecological parameters also influence sex-specific selection and the evolution of sex-biased gene expression. We assayed male and female gene expression in Drosophila serrata along a latitudinal gradient in eastern Australia spanning most of its endemic distribution. Analysis of 11,631 genes across eight populations revealed strong sex differences in the frequency, mode, and strength of divergence. Divergence was far stronger in males than females and while latitudinal clines were evident in both sexes, male divergence was often population-specific, suggesting responses to localized selection pressures that do not covary predictably with latitude. While divergence was enriched for male-biased genes, there was no overrepresentation of X-linked genes in males. By contrast, X-linked divergence was elevated in females, especially for female biased genes. Many genes that diverged in D. serrata have homologs also showing latitudinal divergence in D. simulans and D. melanogaster on other continents, likely indicating parallel adaptation in these distantly related species. Our results suggest that sex differences in selection play an important role in shaping the evolution of gene expression over macro- and micro-ecological spatial scales.
Project description:Genes with sex-biased expression in adults experience unique evolutionary dynamics. It is unclear, however, whether the selection pressures responsible for these well documented patterns also act upon genes with sex-biased expression in other developmental stages. To examine this, we measured expression in male and female Drosophila melanogaster larvae.
Project description:Extensive sex-biased expression has been seen in multiple surveys D. melanogaster. We were interested in broadly sampling sex-biased expression of orthologs and species- or lineage-specific genes in the Drosophila genus. To appropriately assay gene expression in multiple species, we used custom microarrays designed against each of six species that broadly sample the phylogenetic space represented by the newly completed genomes (D. simulans, D. yakuba, D. ananassae, D. pseudoobscura, D. virilis and D. mojavensis) and an array designed against D. melanogaster to determine the overall patterns of sex-biased expression in those species and their chromosome linkage. Keywords: other