Project description:Contributions of the viral component of the microbiome, the virome, to the development of innate and adaptive immunity are largely unknown. In this study, we systematically defined the tissue host response to a panel of eukaryotic enteric viruses inducing asymptomatic infection in mice. Small intestinal and colon transcriptomes from GF mice were compared to the ones from germ-free mice mono-infected with each of the viruses in the panel. This transcriptional profiling unveiled general adaptations by the host as well as numerous viral strain-specific responses that persist.
2021-03-05 | GSE168293 | GEO
Project description:Studying Virome of Millipedes Reveals Large Amount of Distant Novel Viruses
Project description:Determination of miRNA profiles in most prominent mosquitoes will determine the potential targets for mosquito control Some of the most medically important viruses, such as dengue virus, West Nile virus, Zika virus, and yellow fever virus, are transmitted by mosquitoes. These aptly named arboviruses impose a tremendous cost to the health of populations around the world. As a result, much effort has gone into the study of the impact of these viruses in human infections. Comparatively less efforts, however, have been made to study the way these viruses interact with mosquitos themselves. It has long been held that these viruses are introduced into the midgut of mosquitoes upon ingestion of a blood meal before being transmitted within the saliva upon subsequent feeding. This sequence requires that the mosquito be able to defend itself from infection every step along the way-from ingesting bloodmeal to subsequent feeding. The main defense mechanisms employed by the mosquitoes to control viruses is RNA interference (RNAi). Modulation of this facet of the mosquito’s immune system would thereby suggest a practical strategy for vector control. This paper will provide an up to date overview of the mosquito’s immune system along with novel data describing miRNA profiles for Aedes aegypti and Culex quinquefasiatus in Grenada, West Indies.
Project description:Viromes of sour and sweet cherry trees in Hungarian germ line collections were surveyed using small RNA HTS as an unbiased method. RNA from leaf samples of different cultivars were purified and used to produce seven pools from which small RNA HTS libraries were prepared. The sequenced reads were analyzed using bioinformatic methods to revel the presence of viruses in the samples. Presence of the viruses were validated using RT-PCR.
2024-10-31 | GSE233558 | GEO
Project description:Virome of Culex annulirostris from Western Australia
Project description:Anti-tick vaccines have proved to be an effective and sustainable method for the control of tick infestations and tick-borne diseases with clear advantages over the application of chemical acaricides (Šmit and Postma, 2016; de la Fuente, 2018; Ndawula and Tabor, 2020). Moreover, the efficacy of acaricide application against Ornithodoros ticks is seriously limited owing to their endophilic/nidicolous life style, which make these ticks less accessible to the chemical acaricides (Astigaraga et al., 1995). Success in tick vaccine development is largely dependent on identification of new and highly protective tick antigens. Searching of new candidate protective antigens is currently being approached among tick molecules that play important biological functions at the tick-host interface, and more precisely among the salivary and intestinal proteins involved in biological processes specifically evolved by ticks to adapt to haematophagy (de la Fuente et al., 2016; Oleaga et al., 2021; Pérez-Sánchez et al., 2021). Accordingly, next-generation sequencing (NGS) and high-throughput proteomics technologies are been used to explore the transcriptome and proteome of the salivary glands/saliva and midguts of an increasing number of tick species and obtain the corresponding sialomes and mialomes (Chmelař et al., 2016; Almeida-Martins et al., 2020; Mans et al., 2020; Oleaga et al., 2021). These studies have identified a wealth of tick molecules related to tick haematophagy, tick-host interplay and pathogen transmission, which can then be scrutinized and filtered in vaccinomics pipelines for selecting candidate protective antigens (Chmelař et al., 2016; Maruyama et al., 2017; Antunes et al., 2018; de la Fuente et al., 2018; Ren et al., 2019; Couto et al., 2021). Similarly, we were also interested in characterizing the O. erraticus sialome. As far as O. erraticus saliva must contain all the bioactive molecules that the tick need to successfully feed, decoding its composition will lead to the discovery of new antigen targets for developing vaccines for the control and prevention of O. erraticus infestations and the diseases it transmits. Accordingly, the objective of the present work was to obtain the proteome of the saliva of O. erraticus adult ticks. For this, we have used a proteomics informed by transcriptomics approach to analyse female and male saliva separately using two different mass spectrometry approaches: liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode, and Sequential Window Acquisition of all Theoretical fragment ion spectra Mass Spectrometry (SWATH MS). SWATH MS is a specific variant of data-independent acquisition (DIA) methods that combines deep proteome coverage capabilities with quantitative consistency and accuracy (Ludwig et al., 2018). Here we reported the identification of 387 non-redundant proteins in the saliva of O. erraticus adult ticks as well as a qualitative and quantitative comparison of the saliva protein composition between both sexes. The integration of O. erraticus sialoproteomic and sialotranscriptomic datasets facilitate a better understanding of the physiology of feeding in O. erraticus and will drive the discovery of new and more effective antigen targets for development of anti-tick vaccines.
Project description:<p>Definition of the human microbiome is an important scientific priority. This study will expand the scope of the investigation to include viruses, which account for a substantial proportion of infectious disease morbidity and mortality, especially in children. The long-term goal of this project is to describe the human virome in children and to investigate its relevance to febrile illnesses in children. The project will also seek to understand the relationship of the immune system to the composition of the virome. Thus, the project's specific aims are 1) To elucidate the spectrum of viruses that can be detected using non-biased, high throughput sequencing on samples of blood, respiratory, and gastrointestinal secretions from healthy children and to use this information as a basis for understanding the role of viruses in acute febrile illnesses without an obvious source, and 2) to investigate the effect of various forms of immunosuppression on the spectrum of viruses detected in children, and to use this information as a basis for understanding the role of viruses in acute febrile illnesses occurring in these children. Our preliminary studies show that diverse viruses can be detected in children having undiagnosed fever. To carry out the specific aims, well children will be enrolled prior to having elective surgery, and febrile otherwise well children will be enrolled from the Emergency Department at St. Louis Children's Hospital. Immunocompromised children will be recruited from hematopoietic stem cell and solid organ transplant clinics, the HIV/AIDS clinic, and the rheumatology/immunology clinic from the same hospital. Children with fever will have samples obtained at the time of the febrile illness and at 1 and 6-month follow-up visits. Selected samples from each study group will be analyzed at the Genome Center at Washington University (GCWU) using next generation 454 high throughput sequencing to detect and sequence all viral sequences present. We anticipate detecting and sequencing a broad range of viruses, including previously unrecognized agents. A variety of techniques will be used to investigate the significance of viruses detected. Virus-specific PCR assays will be used to determine the frequency and extent of viruses detected by sequencing, using the full range of samples collected. Host response to the detected viruses will be investigated using serologic analysis, cytokine profiling, and microarrays to characterize host gene expression. These studies will take advantage of follow-up samples to compare the acute response with the response in the convalescent period. This study will draw upon the expertise and technological assets of one of the world's most powerful sequencing centers to provide the research community with a comprehensive sequence data base of the viruses that are present in children, which can be used to improve our understanding of the causes of febrile illnesses in young children, many of which are currently undiagnosed.</p>
Project description:During a proof-of-concept study, virome of millet, grown as weed was determined by small RNA HTS. As a result, from the pools of 20 randomly collected millet samples collected at two locations, we identified the presence of three viruses, two of them first time in Hungary. Based on our results we could only suspect that these viruses: wheat streak mosaic virus (WSMV), barley stripe mosaic virus (BYSMV) and barley virus G (BVG) could have been overwintered in millet or other monocotyledonous weeds growing at these fields. As a follow-up research, in the summer of 2021, we collected symptomatic leaves of several monocotyledonous plants at the same fields. This time the sampling was done in July. From the samples, small RNA HTS was carried out.
2024-10-02 | GSE270076 | GEO
Project description:Virome Analysis of Culex tritaeniorhynchus from the Philippines
| PRJNA1135456 | ENA
Project description:Virome analysis for identification of novel mammalian viruses in bats from southeast China