Project description:Peanut allergy reaction severity correlates with increased intestinal epithelial cell (IEC) barrier permeability. CC027/GeniUnc mice develop peanut allergy by intragastric administration of peanut proteins without adjuvant. We report that peanut-allergic CC027/GeniUnc mice showed increased IEC barrier permeability and systemic peanut allergen Ara h 2 after challenge. Jejunal epithelial cell transcriptomics showed effects of peanut allergy on IEC proliferation, survival, and metabolism, and revealed IEC-predominant angiopoietin like-4 (Angptl4) as a unique feature of CC027/GeniUnc peanut allergy. Peanut-allergic pediatric patients demonstrated significantly higher serum ANGPTL4 compared to non-peanut-allergic but atopic patients, highlighting its potential as a biomarker of peanut allergy.
Project description:Purpose: To date, the biological activity of AMF has not been fully investigated. We set out to analyze how AMF regulates gene expression in HepG2 cells. Conclusions: we performed clustering analysis on the various expressed genes associated with autophagy, and the pathways confirmed in the KEGG and BP analysis
Project description:Aspergillus flavus is one of the major fungal molds that colonize peanut in the field and during storage. The impact to human and animal health and to economy in agriculture and commerce are significant since this mold produces the most potent natural toxins, aflatoxins, which are carcinogenic, mutagenic, immunosuppressive, and teratogenic. A strain of marine Bacillus megaterium isolated from the Yellow Sea of East China was evaluated for its effect to inhibit aflatoxin formation through down-regulating aflatoxin pathway gene expression in A. flavus as demonstrated by genechip analysis in liquid medium and peanuts. The results showed that aflatoxin accumulation in potato dextrose broth liquid medium and liquid minimal medium was almost totally (more than 98%) inhibited by B. megaterium. The expression of many of the aflatoxin biosynthetic genes in the fungus was confirmed to be turned down. Some of the target genes down-regulated by B. megaterium within the whole genome and within the aflatoxin pathway gene cluster (aflF, aflT, aflS, aflJ, aflL, aflX) were identified. These target genes could be used for controlling aflatoxin contamination in crops such as corn, cotton, and peanut. Importantly, the expression of the regulatory gene aflS was found to be significantly down-regulated. The effect of B. megaterium on aflatoxin biosynthesis and genes expression of pathogen was firstly tested in potato dextrose broth (PDB) and glucose minimal salts medium (MM). The cell suspension of B. megaterium (concentration in PDB and MM was finally adjusted to 108 CFU/ml) or sterile distilled water as a control was added into the 100 ml beaker flask containing 15 ml PDB or MM, respectively. Then 100 M-NM-<l of spore suspension (5 M-CM-^W 106 spores/ml) of A. flavus were added into each beaker flask. After 48 h of incubation at 28M-BM-0C at 200 rpm, mycelia were collected, fresh frozen with liquid nitrogen, ground to a fine powder in liquid nitrogen, and stored at -80M-BM-0C for further analysis. The effect of B. megaterium on aflatoxin biosynthesis and genes expression in the A. flavus fungal pathogen was also tested in two types of peanut kernels, UF 715133-1 and Jinhua 1012, respectively. Peanut kernels were wounded (6 mm diameter and approximately 3 mm deep) using a sterile borer and then 20 M-NM-<l of 1 M-CM-^W 108 CFU/ml cell suspension of B. megaterium was inoculated on wounded peanut kernels respectively. Sterile distilled water was also used for inoculation as control. Two hours after bacterial inoculation, 10 M-NM-<l A. flavus spore suspension was inoculated into each wound at a concentration of 106 spores/ml. The kernels were placed in artificial weather chamber to maintain high humidity (85%) and incubated at 28M-BM-0C for 7 days. Each treatment was replicated three times with 20 peanut kernels in each test. The mycelia on kernels were harvested at day 7 and fresh frozen immediately in liquid nitrogen, ground into powder, and stored at -80M-BM-0C for further analysis.
Project description:Traditional surgery plus radiotherapy or chemotherapy, existing targeted therapies failed to significantly improve the survival rate of recurrent endometrial cancer, so suggesting that mechanism of recurrence and progression that modulates in endometrial cancer is clinically important. Here, we show that GPER(G protein-coupled estrogen receptor 1) was binded to AMF, and the complex were translocation form plasma to cytoplasmic. Mechanistic investigations elucidated that interaction of AMF with GPER triggers phosphoinositide-3-kinase (PI3K) signaling activating and accelerating the ability of endometrial cancer cells growth. Furthermore, we found that AMF may contribute to GPER-mediated endometrial cancer progression using animal experiments and human histological experiments which be consistent with the above conclusions. On the basis of these evidences including invivo and invitro, our findings suggest that AMF–GPER interaction might be novel key molecular targets for therapeutic management of patients with endometrial cancer, whose disease were progression and recurrence.
Project description:Peanut is one of the most important cash crops with high quality oil, high protein content, and many other nutritional elements, and grown globally. Cultivated peanut (Arachis hypogaea L.) is allotetraploid with a narrow genetic base, and its genetics and molecular mechanisms controlling the agronomic traits are poorly understood. The array SNP data was used for revaling of key candidate loci and genes associated with important agronomic traits in peanut
Project description:Peanut protein is a remarkably potent food allergen in susceptible individuals. The frequency of peanut allergy is approximately 1% in the US population. Peanut allergy often presents with severe symptoms, and it is seldom outgrown. We sought to understand how peanut protein activates human dendritic cells, which are crucial in promoting the activation and differentiation of pathogenic peanut-specific Th2 cells that drive allergic responses.
Project description:Investigation of resistance genes from 36,158 peanut ESTs after salt stress treatment, compared with untreated peanut. Yield some useful insights into salt-mediated signal transduction pathways in peanut.
Project description:Investigation of resistance genes from 36,158 peanut ESTs after cold stress treatment, compared with untreated peanut. Yield some useful insights into cold-mediated signal transduction pathways in peanut.