Project description:This SuperSeries is composed of the following subset Series:; GSE15646: Kasumi-1 AML1-ETO knockdown samples; GSE15647: U937 AML1-ETO inducible samples Experiment Overall Design: Refer to individual Series
Project description:Amino Enhancer of Split (AES) is essential for AML1-ETO induced self-renewal and leukemogenesis. To study the effect of AES on transcription regulation in AML1-ETO expressing Kasumi-1 cells, nascent transcripts in control (shctr) and AES knockdown (shAES) Kasumi-1 cells were labelled with uridine analogue 4-thioduridine with subsequent nascent RNA purification and next generation sequencing (Nascent RNA-seq).
Project description:AML1-ETO, a fusion protein generated by the t(8;21) translocation in acute myeloid leukemia, is a transcription factor implicated in both gene repression and activation. We now show that, in leukemic cells, AML1-ETO resides in and functions through a stable protein complex (AETFC) that contains several hematopoietic transcription factors and cofactors. In conjunction with biochemical and leukemia pathological studies, the ChIP-seq and RNA-seq analyses of the AETFC components in leukemic cells reveal that these components stabilize the complex through multivalent interactions, provide multiple DNA-binding domains for diverse target genes, colocalize genome-wide, cooperatively regulate gene expression, and contribute to leukemogenesis. RNA-seq analyses gene expression upon knockdown of each AETFC component, including AML1-ETO, HEB, E2A, LYL1, LDB1 and LMO2, and double-knockdown of HEB and E2A, in Kasumi-1 cells. ChIP-seq analyses of four AETFC components, namely AML1-ETO, HEB, E2A and LMO2, in Kasumi-1 cells.
Project description:Cancer cells maintain a sensitive balance between growth-promoting oncogenes and apoptosis inhibitors. We show that WT RUNX1 is required for survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 AML cell lines. The malignant AML phenotype is sustained by a delicate AML1-ETO/RUNX1 balance that involves competition for common DNA binding sites regulating a subset of AML1-ETO/RUNX1 targets. Genome expression was profiled after performing knockdown of RUNX1 and AML1-ETO in Kasumi-1 cells using specific siRNA-oligo nucleotides, and analyzed using Affymetrix Gene 1.0 ST arrays.
Project description:The goal of this study is to determine the difference in transcriptome expression profils between wild type and AML1-ETO related fusion circular RNA knockdown Kasumi-1 cells
Project description:Kasumi-1 AML cells that were transfected in triplicate with AML1-ETO or luciferase siRNA constructs by either Amaxa nucleofection or Biorad siLentFect and incubated for 96 hours. Microarrays used to discover an AML1-ETO signature for a GE-HTS screen to identify AML1-ETO modulators. Experiment Overall Design: Kasumi-1 AML cells incubated for 96 hours after they were transfected in triplicate with AML1-ETO or luciferase siRNA constructs by either Amaxa nucleofection or Biorad siLentFect along with three control samples not transfected with a construct.
Project description:Kasumi-1 AML cells that were transfected in triplicate with AML1-ETO or luciferase siRNA constructs by either Amaxa nucleofection or Biorad siLentFect and incubated for 96 hours. Microarrays used to discover an AML1-ETO signature for a GE-HTS screen to identify AML1-ETO modulators.
Project description:Cancer cells maintain a sensitive balance between growth-promoting oncogenes and apoptosis inhibitors. We show that WT RUNX1 is required for survival of t(8;21)-Kasumi-1 and inv(16)-ME-1 AML cell lines. The malignant AML phenotype is sustained by a delicate AML1-ETO/RUNX1 balance that involves competition for common DNA binding sites regulating a subset of AML1-ETO/RUNX1 targets. Genomewide sequencing data is included herein: Transcription factors RUNX1 c-terminus and n-terminus which is shared with AML1-ETO were profiled independently), AML1-ETO and AP4 were profiled using ChIP-Seq in Kasumi-1 cells, as well as control ChIP-Seq experiments of non immune serum. Two replicates were performed for each transcription factor profiling and control experiment.
Project description:Nearly 10-15% of all acute myeloid leukemia (AML) cases are caused by a recurring chromosomal translocation between 8 and 21, t(8;21). The t(8;21) translocation generates the AML1-ETO leukemia fusion protein. AML1-ETO promotes leukemogenesis by transcriptionally dysregulating important cell-fate genes. Here, to better understand how AML1-ETO deregulates transcription, we performed paired ChIP-Seq analyses of sequence-specific transcription factors, coactivators, corepressors, HDACs, RNA Pol II and acetyl-histone marks in both control and AML1-ETO-depleted Kasumi-1 t(8;21) AML cells.
Project description:The AML1/ETO fusion protein is essential to the development of acute myeloid leukemia (AML), and is well recognized for its dominant-negative effect on the co-existing wild-type protein AML1. However, the involvement of wild-type AML1 in AML1/ETO-driven leukemogenesis remains elusive. Through chromatin immunoprecipitation sequencing, computational analysis plus a series of experimental validations, we report here that AML1 is able to orchestrate the expression of AML1/ETO targets regardless of being activated or repressed, via forming a complex with AML1/ETO and via recruiting the cofactor. 4 ChIP-seq assays were used to identify the high confidence binding regions of AML1-ETO and AML1 in t(8;21) AML Kasumi-1 cell lines. The anti-AML1 (N20) antibody targets the N-terminus of AML1 and recognizes both AML1 and AML1/ETO; the anti-AML1 (C19) antibody targets the C-terminus of AML1 and recognizes AML1 but not AML1/ETO; the anti-ETO (C20) antibody targets the C-terminus of ETO and specifically recognizes AML1/ETO. 2 ChIP-seq assays were used to identify the binding regions of AML1 in human macrophage U937 cell lines. And the total input was used as control.