Project description:pc_arcole - arcole / pgpr - What are the genes implicated in the efficiency of nitrogenous nutrition when A.thaliana is inoculated with a PGPR (Plant Growth Promoting Rhizobacteria)? - A.thaliana seeds germinated and grew during ten days until they were transfered in 6 different media: 0,5 mM nitrate with PGPR (Plant Growth Promoting Rhizobacteria), 0,5mM nitrate without PGPR, 2mM nitrate with PGPR, 2mM nitrate without PGPR, 20 mM nitrate with PGPR, 20 mM nitrate without PGPR. Young plantlets grew 7 days in these new mediums. Shoots are collected in eppendorf.
Project description:pc_arcole - arcole / pgpr - What are the genes implicated in the efficiency of nitrogenous nutrition when A.thaliana is inoculated with a PGPR (Plant Growth Promoting Rhizobacteria)? - A.thaliana seeds germinated and grew during ten days until they were transfered in 6 different media: 0,5 mM nitrate with PGPR (Plant Growth Promoting Rhizobacteria), 0,5mM nitrate without PGPR, 2mM nitrate with PGPR, 2mM nitrate without PGPR, 20 mM nitrate with PGPR, 20 mM nitrate without PGPR. Young plantlets grew 7 days in these new mediums. Shoots are collected in eppendorf. 6 dye-swap - dose response,organ comparison,treated vs untreated comparison
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed.
Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed. We compared and anylyzed the transcriptome changes of the bacteria Bacillus subtilis OKB105 in response to rice seedings for 2 h. Total RNA was extracted and Random priming cDNA synthesis, cDNA fragmentation and terminal labeling with biotinylated GeneChip DNA labeling reagent, and hybridization to the Affymetrix GeneChip Bacillus subtilis Genome Array.
Project description:In SMS-CTR cells, we identified genomewide binding sites of CASZ1b. The overexpression of CASZ1b in SMS-CTR cells led to a regional epigenetic modification.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:Smith-Magenis syndrome (SMS) is a genomic disorder caused by the deletion of a chromosomal region at 17p11.2. Individuals with SMS are frequently diagnosed with autism and have profound cortical deficits, including reduced cortex volume, mild ventriculomegaly, and epilepsy. Here, we developed human induced pluripotent stem cell (hiPSC)-derived neuronal models to understand how del(17)p11.2 affects cortical development. Hi-C identified local fusion and global reorganization of topological domains, as well as genome-wide miswiring of chromatin 3-dimensional (3D) interactions in SMS hiPSC and 3D cortical organoids. Single-nucleus RNA-seq of SMS cortical organoids identified neuropsychiatric disease-enriched transcriptional signatures and dysregulation of genes involved in catabolic and biosynthetic pathways, cell cycle processes, and neuronal signalling. SMS cortical organoids had reduced growth, enlarged ventricles, and impaired cell cycle progression. In a complementary hiPSC-derived 2D cortical neuronal model, we found SMS cortical neurons had accelerated dendritic growth, followed by neuronal hyperexcitability that was associated with a reduced potassium conductance. Our study demonstrates that del(17)p11.2 disrupts multiple steps of human cortical development, from chromatin wiring, transcriptional regulation, cell cycle progression, and morphological maturation to neurophysiological properties, and hiPSC-derived models recapitulate key neuroanatomical and neurophysiological features of SMS.