Project description:The integration of omics technologies into molecular biological research has transformed it into a field where a system can be investigated as a whole by combining information from multiple biochemical layers. This extension of traditional molecular biology, where various data sources are considered independently, offers novel insights into complex molecular interactions. Here, we present a multi-omics analysis of murine brown adipocytes undergoing thermogenic lipolysis, which is part of the non-shivering response to cold. Through combining information from multiple types of biomolecules, we describe what is important for each biochemical layer, and the coordinated molecular responses across different layers at the system level, at different time points. Furthermore, a classification of data integration approaches for multi-omics data analysis is presented, and their applications in our study are compared, providing insights into the focus and effectiveness of these methods.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:β-Adrenergic signaling is a core regulator of brown adipocyte function stimulating both lipolysis and transcription of thermogenic genes, thereby expanding the capacity for oxidative metabolism. Here we have used pharmacological inhibitors and a novel direct activator of lipolysis to acutely modulate the activity of lipases, thereby enabling us to uncover lipolysis-dependent signaling pathways downstream of β-adrenergic signaling in brown adipocytes. We show that induction of lipolysis leads to acute induction of several gene programs and is required for transcriptional regulation by β-adrenergic signals. Using machine-learning algorithms to infer causal transcription factors, we show that PPARs are key mediators of lipolysis-induced activation of genes involved in lipid metabolism and thermogenesis. Importantly, lipolysis also activates the unfolded protein response and regulates the core circadian transcriptional machinery independently of PPARs. Our results demonstrate that lipolysis generates important metabolic signals that exert profound pleiotropic effects on brown adipocyte transcription and function.
Project description:Sustained responses to transient stimuli are important for animals to survive and reproduce in their environment. However, the mechanisms that underlie altered responses to temporary shifts in abiotic factors, such as temperature, remain poorly understood. Here, we find that transient cold exposure leads to sustained transcriptional and metabolic adaptations in brown adipose tissue, which are critical for an improved thermogenic response to secondary cold encounter. Primary thermogenic challenge triggers the delayed induction of a lipid biosynthesis program even after cessation of the original stimulus, which protects from subsequent exposures. By combining single-nucleus RNA sequencing, spatial transcriptomics, and immunofluorescence imaging, we discover that this lipogenic response is carried out by a distinct subpopulation of brown adipocytes that is localized along the perimeter of classical Ucp1high brown adipocytes. The protective effect of the lipogenic program is associated with the production of acyl carnitines, and supplementation of acyl carnitines recapitulates improved secondary cold responses even in the absence of lipogenesis. Overall, our data highlight the importance of heterogenous brown adipocyte populations for “thermogenic memory” in the setting of repeated cold exposure, which may have implications for therapeutic efforts leveraging short-term thermogenesis to counteract the hypercaloric state of obesity.
Project description:Brown adipose tissue (BAT) generates heat via uncoupled respiration, providing mammals with an evolutionary defense against environmental cold. Although the molecular pathways by which cold activates brown adipocytes are well understood, little is known about how BAT maintains its thermogenic capacity during adaptation to environmental warmth. Here, we identify the transcriptional repressor BCL6 as the switch for maintaining brown adipocyte cellular identity under warm conditions. Mice lacking BCL6 in their brown adipocytes display normal thermogenic responses when housed in a cool environment, but fail to maintain thermogenic fitness when housed under warm conditions. In a temperature-dependent manner, BCL6 suppresses apoptosis, fatty acid storage, and coupled respiration to maintain thermogenic competence in brown adipocytes. Enhancer analysis revealed that BCL6 reinforces brown-specific while opposing white-specific enhancers to maintain cellular identity. Thus, unlike other regulators, BCL6 is dispensable for differentiation and activation of brown adipocytes, but specifically required for their maintenance in warmth.