Project description:The on-going Microbial Observatory Experiments on the International Space Station (ISS) revealed the presence of various microorganisms that may be affected by the distinct environment of the ISS. The low-nutrient environment combined with enhanced irradiation and microgravity may trigger changes in the molecular suit of microorganisms leading to increased virulence and resistance of microbes. Proteomic characterization of two Aspergillus fumigatus strains, ISSFT-021 and IF1SW-F4, isolated from HEPA filter debris and cupola surface of the ISS, respectively, is presented, along with a comparison to experimentally established clinical isolates Af293 and CEA10. In-depth analysis highlights variations in the proteome of both ISS-isolated strains when compared to the clinical strains. Proteins up-regulated in ISS isolates were involved in oxidative stress response, and carbohydrate and secondary metabolism. This report provides insight into possible molecular adaptation of filamentous fungi to the unique ISS environment. Lastly, an attempt was made to elucidate plausible causes of the enhanced virulence of both ISS-isolated A. fumigatus strains.
Project description:In this study, samples of 16 dairy cows from a MAP infected farm were used. Serum, milk and fecal samples were collected. Categorizing these cows into two groups based on their MAP infection status different standard methods for detection MAP were applied. Healthy controls showed no positive results in enzyme-linked immunosorbent assay (ELISA) with serum and milk samples (cattletype MAP Ab, Qiagen, Hilden, Germany; In-direct, IDVet, Grabels, France) and after cultivation of fecal samples on commercial Her-rold´s Egg Yolk Agars (HEYM agar, Becton Dickinson, Heidelberg, Germany) for 12 weeks. Cows with positive results were grouped into MAP infected cows. Specifically, for mass spectrometry analysis serum of seven MAP infected cows and seven healthy controls were used. All animals were from the same farm and were kept under the same environmental conditions. For additional mass spectrometry analysis with a further control group sam-ples of 21 dairy cows from an uninfected farm were examined. All cattle from this farm showed negative results in ELISA with serum and milk samples. Additionally, there was never a positive result in regularly tested fecal samples and sock swab samples of this farm. For verification of differential CTSS expression in Western blot analysis five dairy cows from another infected farm were consultedincluded. MAP status of these cows was analyzed by cultivation of fecal samples on HEYM agar for 12 weeks and ELISA with se-rum samples. In detail, two cattle were categorized into healthy controls and three cattle into MAP infected cows. Withdrawal of bovine venous whole blood and experi-mental protocols were approved by the local authority, Government of Upper Bavaria, permit no. ROB-55.2-2532.Vet_03-17-106.
Project description:Five healthy Laoshan dairy goats (four years old, third lactation) from Qingdao Laoshan dairy goat primary farm (Shandong Province, China) were used. The mammary gland samples were collected surgically after general anaesthesia using Xylazine Hydrochloride injection solution (Huamu Animal Health Products Co., Ltd. China) at corresponding lactation stage, including early, peak and late lactations.
Project description:Experimental evolution is a powerful approach to study how ecological forces shape microbial genotypes and phenotypes, but to date strains were predominantly adapted to conditions specific to laboratory environments. The lactic acid bacterium Lactococcus lactis naturally occurs on plants and in the dairy environment and it is generally believed, that dairy strains originate from the plant niche. Here we investigated the adaptive process from the plant to the dairy niche and show that during the experimental evolution of a L. lactis plant isolate in milk, several mutations are selected that affect amino acid metabolism and transport. Three independently evolved strains were characterized by whole genome re-sequencing, revealing 4 to 28 mutational changes in the individual strains. Two of the adapted strains showed clearly increased acidification rates and yields in milk, and contained three identical point mutations. Transcriptome profiling and extensive phenotyping of the wild-type plant isolate compared to the evolved mutants, and a "natural" dairy isolate confirmed that major physiological changes associated with improved performance in the dairy environment relate to nitrogen metabolism. The deletion of a putative transposable element led to a significant decrease of the mutation rate in two of the adapted strains. These results specify the adaptation of a L. lactis strain isolated from mung bean sprouts to growth in milk and they demonstrate that niche-specific adaptations found in environmental microbes can be reproduced by experimental evolution.
Project description:Escherichia coli is a highly diverse bacterial species comprising both commensal and pathogenic strains. Here, we report complete genome sequences of 16 E. coli bacteriophages isolated from various environmental samples using the ECOR collection as isolation hosts.
Project description:We investigated miRNA expression in Holstein dairy cow of mammary gland with different producing quality milk using high-throughput sequence and qRT-PCR techniques. miRNA libraries were constructed from mammary gland tissues taken from a high producing quality milk and a low producing quality milk Holstein dairy cow, the small RNA digitalization analysis based on HiSeq high-throughput sequencing takes the SBS-sequencing by synthesis.The libraries included 4732 miRNAs. A total of 124 miRNAs in the high producing quality milk mammary gland showed significant differences in expression compared to low producing quality milk mammary gland (P<0.05). Conclusion: Our study provides a broad view of the bovine mammary gland small RNA expression profile characteristics. Differences in types and expression levels of miRNAs were observed between high producing quality milk and a low producing quality milk Holstein dairy cow
Project description:Effect of breed in mid lactation Holstein (H) and Montbéliarde (M) cows on mammary glande miRNA profile. Genetic polymorphisms are known to influence milk production and composition. However, genomic mechanisms involved in the genetic regulation of milk component synthesis are not completely understood. MicroRNAs (miRNA) regulate gene expression. The objective of the present study was to compare mammary gland miRNomes of two dairy cow breeds, Holstein and Montbéliarde, with different dairy performances. Milk, fat, protein, and lactose yields were lower in Montbéliarde than in Holstein cows. MiRNomes obtained using RNA-Seq technology from the mammary glands of Holstein (n = 5) and Montbéliarde (n = 6) lactating cows revealed 623 distinct expressed miRNAs, among which 596 were known and 27 were predicted miRNAs. The comparison of their abundance in the mammary gland of Holstein versus Montbéliarde cows showed 22 differentially expressed miRNAs (Padj ≤ 0.05). Among them, 11 presented a fold change ≥2, with 2 highly expressed miRNAs (miR-100 and miR-146b). Without taking into account the fold change, the differential miRNA with the highest abundance was miR-186, which is known to inhibit cell proliferation and epithelial-to-mesenchymal transition. Data mining showed that the 17 differentially expressed miRNAs with more than 20 reads on average, regulate mammary gland plasticity and may be related to the observed differences in milk production between Holstein and Montbéliarde, which are two breeds with different mammogenic potential. Some of the 17 miRNAs could potentially target mRNAs involved in signaling pathways (such as mTOR) and in lipid metabolism, thereby suggesting that they could influence milk composition. In conclusion, we showed differences in mammary gland miRNomes of two dairy bovine breeds. These differences suggest a potential role of miRNAs in mammary gland plasticity and in milk component synthesis related to milk production and composition.
Project description:One of the functions of the mammalian large intestinal microbiota is the fermentation of plant cell wall components. In ruminant animals, the majority of their nutrients are obtained via pregastric fermentation; however, up to 20% can be recovered from microbial fermentation in the large intestine. Eight-week continuous culture enrichments of cattle feces with cellulose and xylan-pectin were used to isolate bacteria from this community. A total of 459 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented: Firmicutes (51.9%), Bacteroidetes (30.9%), Proteobacteria (11.1%), Actinobacteria (3.5%), Synergistetes (1.5%), and Fusobacteria (1.1%). The majority of bacterial isolates had <98.5% identity to cultured bacteria with sequences in the Ribosomal Database Project and thus represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families Lachnospiraceae, Ruminococcaceae, Erysipelotrichaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, B. ovatus, and B. xylanisolvens and members of the Porphyromonadaceae family. Many of the Firmicutes and Bacteroidetes isolates were related to species demonstrated to possess enzymes which ferment plant cell wall components; the others were hypothesized to cross-feed these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 98% of the isolates not represented as previously cultured, there are new opportunities to study the genomic and metabolic capacities of these members of the complex intestinal microbiota.