Project description:Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle.TaxonomyKingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia.Host rangeP. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet.Disease symptomsP. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Project description:Sexual reproduction in Ascomycetes is well described in several model organisms such as Neurospora crassa or Podospora anserina. Deciphering the biological process of sexual reproduction (from the recognition between compatible partners to the formation of zygote) can be a major advantage to better control sexually reproducing pathogenic fungi. In Pyricularia oryzae, the fungal pathogen causing blast diseases on several Poaceae species, the biology of sexual reproduction remains poorly documented. Besides the well-documented production of asexual macroconidia, the production of microconidia was seldom reported in P. oryzae, and their role as male gamete (i.e., spermatia) and in male fertility has never been explored. Here, we characterised the morphological features of microconidia and demonstrated that they are bona fide spermatia. Contrary to macroconidia, microconidia are not able to germinate and seem to be the only male gametes in P. oryzae. We show that fruiting body (perithecium) formation requires microconidia to get in contact with mycelium of strains of opposite mating type, to presumably fertilise the female gametes.
Project description:Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.
Project description:In plant-pathogen interactions, a proper light environment affects the establishment of defense responses in plants. In our previous experiments, we found that nonhost resistance (NHR) to Pyricularia oryzae Cav. in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), in diurnal conditions, varies with the inoculation time. Moreover, we indicated that the circadian clock plays an important role in regulating time-of-day differences in NHR to P. oryzae in Arabidopsis. However, the involvement of photoperiod in regulating NHR was still not understood. To determine the photoperiod role, we performed the experiments in continuous light and darkness during the early Arabidopsis-P. oryzae interaction. We found that the light period after the inoculation in the evening enhanced the resistance to penetration. However, the dark period after the inoculation in the morning suppressed the penetration resistance. Furthermore, the genetic analysis indicated that jasmonic acid, reactive oxygen species, and tryptophan-derived metabolite(s) contribute to the photoperiod regulation of NHR in Arabidopsis. The present results denote that photoperiod plays an important role in regulating time-of-day differences in NHR to P. oryzae in Arabidopsis.
Project description:Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.