Project description:Myanmar locates in the crossroads of South Asia, Southeast Asia, and East Asia, and is known for high culture diversity in different ethnic groups. It is considered to be important for understanding human evolutionary history and genetic diversity in East Eurasia. However, relatively few studies have examined the population structure and demographic history in Myanmar to date. In this study, we analyzed more than 220,000 genome-wide SNPs in 175 new samples of five ethnic groups from Myanmar and compared them with the published data. Our results showed that the Myanmar population is intricately substructured, with the main observed clusters corresponding roughly to western/northern highlanders (Chin, Naga, and Jingpo) and central/southern lowlanders (Bamar and Rakhine). The gene flow inferred from South Asia has a substantial influence (~11%) on the gene pool of central/southern lowlanders rather than western/northern highlanders. The genetic admixture is dated around 650 years ago. These findings suggest that the genome-wide variation in Myanmar was likely shaped by the linguistic, cultural, and historical changes.
2019-12-31 | GSE74100 | GEO
Project description:Investigating genetic diversity of Ethiopian indigenous chickens
| PRJEB46494 | ENA
Project description:Whole-genome sequencing revealed genetic diversity, structure and selection of Guizhou indigenous chickens
Project description:The conservation and development of chicken has considerably affected human activities, but the admixture history of chicken breeds has so far been poorly demonstrated especially for Chinese indigenous breeds. Using genotypes from 580961 single nucleotide polymorphism markers scored in 1201 animals, we evaluate the genetic diversity (heterozygosity and proportion of polymorphic markers), Linkage disequilibrium (LD) decay, population structure (principal component analysis and neighbor-joining tree), genetic differentiation (FST and genetic distance) and migration events (Treemix and f-statistics) of eight domesticated chicken breeds. All population analytical methods reveal patterns of hybridization which occurred after divergence in Tibetan chicken. We argue that chicken migration and admixture followed by trade have been important forces in shaping modern Chinese chicken genomic variation. Moreover, isolation by distance may play critical role in the shaping genomic variation within Eurasia continent chicken breeds.
Project description:The inherent diversity of canines is closely intertwined with the unique color patterns of each dog population. These variations in color patterns are believed to have originated through mutations and selective breeding practices that occurred during and after the domestication of dogs from wolves. To address the significant gaps that persist in comprehending the evolutionary processes that underlie the development of these patterns, we generated and analyzed deep-sequenced genomes of 113 Korean indigenous Jindo dogs that represent five distinct color patterns to identify the associated mutations in CBD103, ASIP, and MC1R. The degree of linkage disequilibrium and estimated allelic ages consistently indicate that the black-and-tan dogs descend from the first major founding population on Jindo island, compatible with the documented literature. We additionally demonstrate that black-and-tan dogs, in contrast to other color variations within the breed, exhibit a closer genetic affinity to ancient wolves from western Eurasia than those from eastern Eurasia. Lastly, population-specific genetic variants with moderate effects were identified, particularly in loci associated with traits underlying body size and behavioral variations, potentially explaining the observed phenotypic diversity based on coat colors. Overall, comparisons of whole genome sequences of each coat color population diverged from the same breed provided an unprecedented glimpse into the properties of evolutionary processes maintaining variation in Korean Jindo dog populations that were previously inaccessible.
Project description:The genetic structure of the indigenous hunter-gatherer peoples of Southern Africa, the oldest known lineage of modern man, holds an important key to understanding humanity's early history. Previously sequenced human genomes have been limited to recently diverged populations. Here we present the first complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and of a Bantu from Southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, and 13,146 novel amino-acid variants. These data allow genetic relationships among Southern African foragers and neighboring agriculturalists to be traced more accurately than was previously possible. Adding the described variants to current databases will facilitate inclusion of Southern Africans in medical research efforts.
Project description:We characterized the seminal plasma proteome of eight Beijing-you (BJY) chickens, an indigenous chicken breed in China, differ in sperm motility.