Spiroplasma endosymbiont of Glossina fuscipes fuscipes strain:sGff
Ontology highlight
ABSTRACT: In vitro cultivation and genomic insights into the Spiroplasma symbiont of the tsetse fly Glossina fuscipes implications for trypanosome transmission control
Project description:We collected female and male Glossina fuscipes fuscipes from the field (Uganda) and determined the Spiroplasma infections status of each individual. We used RNA-seq to investigate the effects of Spiroplasma on the male and female gene expression in the reproductive tissues. We observed that Spiroplasma infection induces sex-biased expressional changes in genes that encode proteins critical for tsetse`s reproductive success.
Project description:Background: Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), an acellular gut lining surrounding the blood meal. Crossing of this multi layered structure occurs at least twice during parasite migration and development, but the mechanism of how they do so is poorly understood. In order to better comprehend the molecular events surrounding trypanosome crossing of the tsetse PM, a mass spectrometry-based approach was applied to investigate the PM protein composition using Glossina morsitans morsitans as a model organism. Methods: Urea-SDS extracts of tsetse PM proteins were either subject to an in solution tryptic digestion or fractionated on 1D SDS-PAGE and the resulting bands digested with trypsin. The tryptic fragments from both preparations were purified and analysed by 2D-LC-MS/MS. Tandem MS data were searched against the Glossina-morsitans-Yale_PEPTIDES_GmorY1.1 database downloaded from VectorBase (https://www.vectorbase.org/proteomes) using the Mascot (version 2.3.02, Matrix Science) search engine. Search parameters were a precursor mass tolerance of 10 ppm for the in-solution digest using the LTQ-Orbitrap Velos and 0.6 Da for the lower resolution LTQ instrument. Fragment mass tolerance was 0.6 Da for both instruments. One missed cleavage was permitted, carbamidomethylation was set as a fixed modification and oxidation (M) was included as a variable modification. For in-solution data, the false discovery rate was <1%, and individual ion scores >30 were considered to indicate identity or extensive homology (p <0.05 ). Results: Overall, over 200 proteins were identified, several of those containing Chitin Binding Domains (CBD), a signature of insect PM proteins, including novel peritrophins and peritrophin-like glycoproteins, which are essential in maintaining PM architecture and may act as trypanosome adhesins. Furthermore, a minimum of 27 proteins were also identified from the tsetse secondary endosymbiont, Sodalis glossinidius, suggesting this bacterium is probably in close association with the tsetse PM. Conclusion: To our knowledge this is the first report on the protein composition of G. m. morsitans, an important vector of African trypanosomes. Further functional analyses of these proteins will lead to a better understanding of the tsetse physiology as well as to identification of potential targets to block trypanosome development within the tsetse.
Project description:Tsetse flies (Glossina spp.) house a population-dependent assortment of microorganisms that can include pathogenic African trypanosomes and maternally transmitted endosymbiotic bacteria, the latter of which mediate numerous aspects of their host's metabolic, reproductive, and immune physiologies. One of these endosymbionts, Spiroplasma, was recently discovered to reside within multiple tissues of field captured and laboratory colonized tsetse flies grouped in the Palpalis subgenera. In various arthropods, Spiroplasma induces reproductive abnormalities and pathogen protective phenotypes. In tsetse, Spiroplasma infections also induce a protective phenotype by enhancing the fly's resistance to infection with trypanosomes. However, the potential impact of Spiroplasma on tsetse's viviparous reproductive physiology remains unknown. Herein we employed high-throughput RNA sequencing and laboratory-based functional assays to better characterize the association between Spiroplasma and the metabolic and reproductive physiologies of G. fuscipes fuscipes (Gff), a prominent vector of human disease. Using field-captured Gff, we discovered that Spiroplasma infection induces changes of sex-biased gene expression in reproductive tissues that may be critical for tsetse's reproductive fitness. Using a Gff lab line composed of individuals heterogeneously infected with Spiroplasma, we observed that the bacterium and tsetse host compete for finite nutrients, which negatively impact female fecundity by increasing the length of intrauterine larval development. Additionally, we found that when males are infected with Spiroplasma, the motility of their sperm is compromised following transfer to the female spermatheca. As such, Spiroplasma infections appear to adversely impact male reproductive fitness by decreasing the competitiveness of their sperm. Finally, we determined that the bacterium is maternally transmitted to intrauterine larva at a high frequency, while paternal transmission was also noted in a small number of matings. Taken together, our findings indicate that Spiroplasma exerts a negative impact on tsetse fecundity, an outcome that could be exploited for reducing tsetse population size and thus disease transmission.