Project description:The conservation of the endangered Korean fir, Abies koreana, is of critical ecological importance. In our previous study, a yeast-like fungus identified as Aureobasidium pullulans AK10, was isolated and shown to enhance drought tolerance in A. koreana seedlings. In this study, the effectiveness of A. pullulans AK10 treatment in enhancing drought tolerance in A. koreana was confirmed. Furthermore, using transcriptome analysis, we compared A. koreana seedlings treated with A. pullulans AK10 to untreated controls under drought conditions to elucidate the molecular responses involved in increased drought tolerance.
2024-02-14 | GSE248350 | GEO
Project description:Salvia adenophora Chloroplast Genome Raw sequence reads
| PRJNA716482 | ENA
Project description:Low-coverage NGS data of Orchid subtribe Pleurothallidinae
Project description:Understanding the mechanisms underlying the establishment of invasive plants is critical in community ecology. According to a widely accepted theory, plant-soil-microbe interactions mediate the effects of invasive plants on native species, thereby affecting invasion success. However, the roles and molecular mechanisms associated with such microbes remain elusive. Using high throughput sequencing and a functional gene microarray, we found that soil taxonomic and functional microbial communities in plots dominated by Ageratina adenophora developed to benefit the invasive plant. There were increases in nitrogen-fixing bacteria and labile carbon degraders, as well as soil-borne pathogens in bulk soil, which potentially suppressed native plant growth. Meanwhile, there was an increase of microbial antagonism in the A. adenophora rhizosphere, which could inhibit pathogenicity against plant invader. These results suggest that the invasive plant A. adenophora establishes a self-reinforcing soil environment by changing the soil microbial community. It could be defined as a ‘bodyguard/mercenary army’ strategy for invasive plants, which has important insights for the mitigation of plant invasion.