Project description:This SuperSeries is composed of the following subset Series: GSE18991: Overexpression of Hoxd4 transcription factor alters transcriptional profiles in mouse chondrocytes at E18.5 GSE18992: Overexpression of Hoxc8 transcription factor alters transcriptional profiles in mouse chondrocytes at E18.5!Series_overall_design = Refer to individual Series Refer to individual Series
Project description:Homeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxc8 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform. Embryos were dissected from four different mouse litters at E18.5. Embryos from each litter were grouped according their genotype: TA=control; TR=transgenic.
Project description:Low-protein diets can mitigate renal fibrosis, yet the critical amino acid responsible for this benefit and its underlying mechanism remain unclear. By screening 15 amino acid–restricted diets in a unilateral ureteral obstruction (UUO) model, we identify methionine restriction (MetR) as the most effective intervention. Integrating transcriptomic and cistromic analyses further uncover Hoxc8 as a central pro-fibrotic transcription factor. Hoxc8 is induced by TGF-β–Smad3, amplifies its own expression, and drives fibrotic gene programs through recruitment of the P-TEFb transcriptional elongation complex. Clinically, HOXC8 is elevated in fibrotic human kidneys, and fibroblast-specific Hoxc8 deletion protects mice from fibrosis. MetR attenuates this pro-fibrotic circuit by reducing active histone marks (H3K4me3 and H3K36me3) at the Hoxc8 locus, thereby suppressing the Hoxc8-dependent fibrotic transcriptional program. Together, these findings establish the TGF-β–Smad3–Hoxc8/P-TEFb axis as a key driver of renal fibrosis and highlight MetR as a promising therapeutic strategy.
Project description:BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in α-MEM (Gibco) supplemented with 10% FCS and 50 µg/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturerâs protocol. The cells were infected with adenoviruses 30 h before analysis. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5 using a microarray and various genes associated with protein secretory pathway and ER biogenesis were significantly down-regulated in BBF2H7-/- chondrocytes. We infected primary cultured chondrocytes prepared from BBF2H7-/- mice with adenovirus expressing p60 BBF2H7. Several genes were up-regulated and we picked up them as the direct target of BBF2H7.
Project description:BBF2H7 (BBF2 human homolog on chromosome 7), an ER-resident basic leucine zipper transcription factor, is activated in response to ER stress and abundantly expresses in chondrocytes. While BBF2H7 is widely expressed in many tissues and organs, the most intense signals were detected in the proliferating zone of the cartilage. We compared gene expressions in primary cultured chondrocytes prepared from rib cartilage between WT and BBF2H7-/- mice at E18.5. Primary cultured chondrocytes were prepared from E18.5 rib cartilage of WT and BBF2H7-/- mice. Chondrocytes were isolated using 0.2% collagenase D (Roche) after adherent connective tissue was removed by 0.2% trypsin (Sigma) and collagenase pretreatment. Isolated chondrocytes were maintained in α-MEM (Gibco) supplemented with 10% FCS and 50 µg/mL ascorbic acid. Adenovirus vectors expressing the mouse p60 BBF2H7 (1-377 aa, BBF-N) were constructed with the AdenoX Expression system (Clontech), according to the manufacturer’s protocol. The cells were infected with adenoviruses 30 h before analysis.
Project description:Adipogenesis occurs through a specific gene program in undifferentiated fat progenitors. We hypothesized that the properties of the fat progenitors are regulated by hox genes, the developmental genes essential in different tissue stem cells. Their biased expression in white and brown fat implies roles in distinguishing the two fat types. Among 39 Hox genes, Hoxc8 is highly enriched in undifferentiated adipose tissue stem cells (ADSCs) and down-regulated in differentiated adipocytes. Forced expression of Hoxc8 suppressed adipocyte differentiation of ADSCs. Using microarrays, we investigated the effect of Hoxc8 overexpression on global transcripts in ADSCs. We compared among four groups: untreated ADSCs, adipogenic induction media (MDI)-treated ADSCs, MDI-treated ADSC-vector and MDI-treated ADSC-Hoxc8. A number of, but not all, adipogenesis-related genes are suppressed by Hoxc8. This dataset illustrates the global effect of Hoxc8, a developmental transcription factor, on the expression of adipogenesis-related genes.
Project description:Homeobox genes of the Hox class are required for proper patterning of skeletal elements and play a role in cartilage differentiation. In transgenic mice with overexpression of Hoxc8 during cartilage development, we observed severe defects, namely physical instability of cartilage, accumulation of immature chondrocytes, and decreased maturation to hypertrophy. To define the molecular basis underlying these defects, we performed gene expression profiling using the Affymetrix microarray platform.
Project description:Renal fibrosis is a hallmark of chronic kidney diseases (CKDs) and a key driver of disease progression. While low-protein diets have been shown to alleviate fibrosis and slow CKD progression, the specific amino acids responsible for these effects remain unclear, and such diets often lead to malnutrition due to the restriction of essential amino acids. In this study, we evaluated 15 amino acid-restricted diets in a unilateral ureteral obstruction (UUO) mouse model and found that methionine restriction (MetR) most effectively reduced renal fibrosis. We further confirmed the efficacy of MetR in alleviating renal fibrosis in the folic acid nephropathy (FAN) mouse model. Mechanistically, we identified Hoxc8 as a key transcription factor responsive to MetR, mediating TGF-β-induced fibrotic gene expression. Our findings suggest that TGF-β-Smad3 signaling activates Hoxc8 during myofibroblast activation, initiating a self-reinforcing feedback loop through Hoxc8 self-activation. Using affinity purification-mass spectrometry, we discovered that Hoxc8 interacts with P-TEFb transcription elongation complex to enhance the expression of fibrotic genes. MetR suppresses Hoxc8 expression by reducing histone modifications, specifically H3K4me3 and H3K36me3, thereby inhibiting the TGF-β/Smad3/Hoxc8/P-TEFb axis and downregulating fibrosis-related gene expression. Notably, elevated HOXC8 expression was observed in CKD patients with kidney fibrosis, while fibroblast-specific Hoxc8 knockout mice demonstrated significantly reduced fibrosis following UUO surgery. These findings establish the TGF-β/Smad3/Hoxc8/P-TEFb axis as a crucial regulator of fibrosis and highlight MetR as a promising therapeutic strategy for the treatment of renal fibrosis.
Project description:Adipogenesis occurs through a specific gene program in undifferentiated fat progenitors. We hypothesized that the properties of the fat progenitors are regulated by hox genes, the developmental genes essential in different tissue stem cells. Their biased expression in white and brown fat implies roles in distinguishing the two fat types. Among 39 Hox genes, Hoxc8 is highly enriched in undifferentiated adipose tissue stem cells (ADSCs) and down-regulated in differentiated adipocytes. Forced expression of Hoxc8 suppressed adipocyte differentiation of ADSCs. Using microarrays, we investigated the effect of Hoxc8 overexpression on global transcripts in ADSCs. We compared among four groups: untreated ADSCs, adipogenic induction media (MDI)-treated ADSCs, MDI-treated ADSC-vector and MDI-treated ADSC-Hoxc8. A number of, but not all, adipogenesis-related genes are suppressed by Hoxc8. This dataset illustrates the global effect of Hoxc8, a developmental transcription factor, on the expression of adipogenesis-related genes. Gene expression was compared among untreated ADSCs (control), adipogenic induction media-treated ADSCs, adipogenic induction media-treated ADSC-vector (ADSCs transduced with control vector), and adipogenic induction media-treated ADSC-Hoxc8 (ADSCs transduced with human Hoxc8). Total RNA was isolated from ADSCs using the Qiagen RNeasy kit (Qiagen). At NimbleGen, quality and yield were verified before cDNA synthesis and Cy3-end labeling. The labeled cDNA samples were hybridized to Homo sapiens 4-Plex arrays (Roche NimbleGen, A4487001-00-01) that represent 24,000 human genes. Raw data files for each sample were normalized and background-corrected using a Robust Multi-Array Analysis as implemented by NimbleScan software. Students’ two-tail t-tests were conducted among the samples for each transcript and fold-change was determined. Transcripts whose abundance was significantly altered (P < 0.05) and an absolute fold change greater than 2 were defined as differentially regulated.