Project description:The complete chloroplast genome sequence of Cenchrus Purpureus, important silage in China, is presented in this article. The total genome size is 138,199 bp, containing a large single copy (LSC) region (81,161 bp) and a small single copy region (12,386 bp) which were separated by two inverted repeat (IRs) regions (22,326 bp). The overall GC contents of the plastid genome were 38.6%. In total, 136 unique genes were annotated and they were consisted of 87 protein-coding genes, 41 tRNA genes, and 8 rRNA genes. Twenty-four genes duplicated in the LSC and IR regions. Eighteen genes contained one or two introns.
| S-EPMC7510671 | biostudies-literature
Project description:RNA-Seq of Pennisetum purpureum
Project description:BACKGROUND:Elephant grass [Cenchrus purpureus (Schumach.) Morrone] is used for bioenergy and animal feed. In order to identify candidate genes that could be exploited for marker-assisted selection in elephant grass, this study aimed to investigate changes in predictive accuracy using genomic relationship information and simple sequence repeats for eight traits (height, green biomass, dry biomass, acid and neutral detergent fiber, lignin content, biomass digestibility, and dry matter concentration) linked to bioenergetics and animal feeding. RESULTS:We used single-step, genome-based best linear unbiased prediction and genome association methods to investigate changes in predictive accuracy and find candidate genes using genomic relationship information. Genetic variability (p < 0.05) was detected for most of the traits evaluated. In general, the overall means for the traits varied widely over the cuttings, which was corroborated by a significant genotype by cutting interaction. Knowing the genomic relationships increased the predictive accuracy of the biomass quality traits. We found that one marker (M28_161) was significantly associated with high values of biomass digestibility. The marker had moderate linkage disequilibrium with another marker (M35_202) that, in general, was detected in genotypes with low values of biomass digestibility. In silico analysis revealed that both markers have orthologous regions in other C4 grasses such as Setaria viridis, Panicum hallii, and Panicum virgatum, and these regions are located close to candidate genes involved in the biosynthesis of cell wall molecules (xyloglucan and lignin), which support their association with biomass digestibility. CONCLUSIONS:The markers and candidate genes identified here are useful for breeding programs aimed at changing biomass digestibility in elephant grass. These markers can be used in marker-assisted selection to grow elephant grass cultivars for different uses, e.g., bioenergy production, bio-based products, co-products, bioactive compounds, and animal feed.
Project description:Time course: Interaction of Magnaporthe isolate TH6772 (of the host plant rice) with Hordeum vulgare, Ingrid (leaf epidermis) and Magnaporthe isolate CD180 (of Pennisetum) with Hordeum vulgare, Ingrid (leaf epidermis)