Project description:MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA population associated with ALG-1(anti) complexes in vivo. alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation. Deep-sequencing was performed on cDNA libraries made from total RNA and RNA immunoprecipitated with ALG-1 from mixed-staged populations of three strains: three biological replicates from wild-type animals and two biological replicates each from alg-1(ma192) and alg-1(ma202) mutant animals. In addition, deep-sequencing was performed on cDNA libraries made from L2-staged total RNA in two biological replicates from wildtype and alg-1(ma202) animals and one biological replicate of alg-1(ma192).
Project description:The Argonautes (AGOs) are widely expressed, evolutionarily conserved RNA binding proteins that play an important role in gene expression regulation. The AGOs bind to small regulatory noncoding RNAs such as micro RNAs (miRNAs), short interfering RNAs (siRNAs), Piwi-interacting RNAs (piRNAs) etc. The small regulatory noncoding RNAs serve the function of guiding the AGOs to the right target RNAs by complementary base pairing. Additionally, the AGOs interact with GW182 (TNRC6A/-B/-C) proteins and together with small RNAs, they form an effector ribonucleo protein complex named, RNA Induced Silencing Complex (RISC) that regulates several aspects of transcriptional and post-transcriptional gene expression. ALG-1 (Argonaute Like Gene) and ALG-2 are the AGO proteins in C. elegans that are required for miRNA mediated gene expression regulation. Our efforts towards the characterization of the protein complexes comprised of ALG-1 led to the identification of DPF-3, a conserved protease belonging to clinically relevant Di Peptidyl Peptidase IV family, as the novel interacting partner of ALG-1. We have further explored the role of DPF-3 in AGO regulation.
Project description:MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA population associated with ALG-1(anti) complexes in vivo. alg-1(anti) mutants dramatically overaccumulated microRNA* (passenger) strands, and immunoprecipitated ALG-1(anti) complexes contained nonstoichiometric yields of mature microRNA and microRNA* strands, with some microRNA* strands present in the ALG-1(anti) Argonaute far in excess of the corresponding mature microRNAs. We show complex and microRNA-specific defects in microRNA strand selection and microRNA* strand disposal. For certain microRNAs (for example mir-58), microRNA guide strand selection by ALG-1(anti) appeared normal, but microRNA* strand release was inefficient. For other microRNAs (such as mir-2), both the microRNA and microRNA* strands were selected as guide by ALG-1(anti), indicating a defect in normal specificity of the strand choice. Our results suggest that wild-type ALG-1 complexes recognize structural features of particular microRNAs in the context of conducting the strand selection and microRNA* ejection steps of miRISC maturation.