Project description:Many positive strand RNA viruses encode helicases, but their distinct functions in viral replication cycles is poorly understood. Here, we identify a mutation in the helicase domain of HCV non-structural protein 3 (NS3h), D1467G, which specifically affects (-) strand synthesis, phenocopying mutations in the 3' untranslated region of the genome. D1467G does not impair helicase activity in vitro or the binding of NS3h to critical cis-acting RNA elements, but reduces the interaction of NS3h and NS5B polymerase, potentially contributing to defective (-) strand synthesis. AlphaFold predictions of complexes between NS3h, RNA and/or NS5B suggest that NS3h both remodels the cis-acting RNA elements and unwinds the terminal stem-loop of the HCV genome rendering the template accessible for de novo initiation of (-) strand synthesis by NS5B. Overall, our study provides evidence for a defined function of a viral helicase in (-) strand genome synthesis of a positive strand RNA virus.
Project description:DNA polymerase eta (pol eta) is best known for its ability to bypass UV-induced thymine-thymine (T-T) dimers and other bulky DNA lesions, but pol eta also has other cellular roles. Here, we present evidence that pol eta competes with DNA polymerases alpha and delta for the synthesis of the lagging strand genome-wide, where it also shows a preference for T-T in the DNA template. Moreover, we found that the C-terminus of pol eta which contains a PCNA-Interacting Protein motif is required for pol eta to function in lagging strand synthesis. Finally, we provide evidence that a pol η dependent signature is also found to be lagging strand specific in patients with skin cancer. Taken together, these findings provide insight into the physiological role of DNA synthesis by pol eta and have implications for our understanding of how our genome is replicated to avoid mutagenesis, genome instability and cancer.
Project description:In response to DNA replication stress, DNA replication checkpoint is activated to maintain fork stability, a process critical for maintenance of genome stability. However, how DNA replication checkpoint regulates replication forks remain elusive. Here we show that Rad53, a highly conserved replication checkpoint kinase, functions to couple leading and lagging strand DNA synthesis. In wild type cells under HU induced replication stress, synthesis of lagging strand, which contains ssDNA gaps, is comparable to leading strand DNA. In contrast, synthesis of lagging strand is much more than leading strand, and consequently, leading template ssDNA coated with ssDNA binding protein RPA was detected in rad53-1 mutant cells, suggesting that synthesis of leading strand and lagging strand DNA is uncoupled. Mechanistically, we show that replicative helicase MCM and leading strand DNA polymerase Pole move beyond actual DNA synthesis and that an increase in dNTP pools largely suppresses the uncoupled leading and lagging strand DNA synthesis. Our studies reveal an unexpected mechanism whereby Rad53 regulates replication fork stability.
Project description:Non-structural protein 3 (NS3) is a multifunctional enzyme possessing serine protease, NTPase, and RNA unwinding activities that are required for hepatitis C viral (HCV) replication. HCV non-structural protein 4A (NS4A) binds to the N-terminal NS3 protease domain to stimulate NS3 serine protease activity. In addition, the NS3 protease domain enhances the RNA binding, ATPase, and RNA unwinding activities of the C-terminal NS3 helicase domain (NS3hel). To determine whether NS3hel enhances the NS3 serine protease activity, we purified truncated and full-length NS3-4A complexes and examined their serine protease activities under a variety of salt and pH conditions. Our results indicate that the helicase domain enhances serine protease activity, just as the protease domain enhances helicase activity. Thus, the two enzymatic domains of NS3-4A are highly interdependent. This is the first time that such a complete interdependence has been demonstrated for a multifunctional, single chain enzyme. NS3-4A domain interdependence has important implications for function during the viral lifecycle as well as for the design of inhibitor screens that target the NS3-4A protease.
Project description:The hepatitis C virus (HCV) NS3 protein is a helicase capable of unwinding duplex RNA or DNA. This study uses a newly developed molecular-beacon-based helicase assay (MBHA) to investigate how nucleoside triphosphates (NTPs) fuel HCV helicase-catalyzed DNA unwinding. The MBHA monitors the irreversible helicase-catalyzed displacement of an oligonucleotide-bound molecular beacon so that rates of helicase translocation can be directly measured in real time. The MBHA reveals that HCV helicase unwinds DNA at different rates depending on the nature and concentration of NTPs in solution, such that the fastest reactions are observed in the presence of CTP followed by ATP, UTP, and GTP. 3'-Deoxy-NTPs generally support faster DNA unwinding, with dTTP supporting faster rates than any other canonical (d)NTP. The presence of an intact NS3 protease domain makes HCV helicase somewhat less specific than truncated NS3 bearing only its helicase region (NS3h). Various NTPs bind NS3h with similar affinities, but each NTP supports a different unwinding rate and processivity. Studies with NTP analogs reveal that specificity is determined by the nature of the Watson-Crick base-pairing region of the NTP base and the nature of the functional groups attached to the 2' and 3' carbons of the NTP sugar. The divalent metal bridging the NTP to NS3h also influences observed unwinding rates, with Mn(2+) supporting about 10 times faster unwinding than Mg(2+). Unlike Mg(2+), Mn(2+) does not support HCV helicase-catalyzed ATP hydrolysis in the absence of stimulating nucleic acids. Results are discussed in relation to models for how ATP might fuel the unwinding reaction.
Project description:B-cell receptor (BCR) signaling is essential for the development of B-cells and plays a critical role in B-cell neoplasia. Increasing evidence indicates an association between chronic hepatitis C virus (HCV) infection and B-cell lymphoma, however, the mechanisms by which HCV causes B-cell lymphoproliferative disorder are still unclear. Herein, we demonstrate the expression of HCV viral proteins in B-cells of HCV-infected patients and show that HCV up-regulates BCR signaling in human primary B-cells. HCV nonstructural protein NS3/4A interacts with CHK2 and down-regulates its activity, modulating HuR posttranscriptional regulation of a network of target mRNAs associated with B-cell lymphoproliferative disorders. Interestingly, the BCR signaling pathway was found to have the largest number of transcripts with increased association with HuR and was up-regulated by NS3/4A. Our study reveals a previously unidentified role of NS3/4A in regulation of host BCR signaling during HCV infection, contributing to a better understanding of the molecular mechanisms underlying HCV-associated B-cell lymphoproliferative disorders.