Project description:To explore the effects of gut microbiota of young (8 weeks) or old mice (18~20 months) on stroke, feces of young (Y1-Y9) and old mice (O6-O16) were collected and analyzed by 16s rRNA sequencing. Then stroke model was established on young mouse receive feces from old mouse (DOT1-15) and young mouse receive feces from young mouse (DYT1-15). 16s rRNA sequencing were also performed for those young mice received feces from young and old mice.
Project description:Here we report 16S rRNA data in gut microbiota of autism spectrum disorders compared with healthy volunteers. A total of 1322 operational taxonomic units (OTUs) were identified in the sequence data. The Bacteroidetes and Firmicutes were both dominated phylum in ausitic subjects and healthy controls. Phylum level analysis showed a clear alteration of the bacterial gut community in ASD characterized by a higher Firmicutes (P < 0.05), Proteobacteria (P < 0.001), and Actinobacteria (P < 0.001) than that in healthy controls. However, Bacteroidetes were significantly decreased in ASD patients (P < 0.001).
Project description:To examine the microbiota abundance difference, we performed fecal 16s sequencing of wild type, TCRb-/-, TCRb-/- co-housed with WT and TCRb-/- receiving WT T cells.
Project description:Chronic acid suppression by proton pump inhibitor (PPI) has been hypothesized to alter the gut microbiota via a change in intestinal pH. To evaluate the changes in gut microbiota composition by long-term PPI treatment. Twenty-four week old F344 rats were fed with (n = 5) or without (n = 6) lansoprazole (PPI) for 50 weeks. Then, profiles of luminal microbiota in the terminal ileum were analyzed. Pyrosequencing for 16S rRNA gene was performed by genome sequencer FLX (454 Life Sciences/Roche) and analyzed by metagenomic bioinformatics.
Project description:Objective: Roux-Y gastric bypass (RYGB) surgery is a last treatment resort to induce substantial and sustained weight loss in severe obesity. The anatomical rearrangement affects the intestinal microbiota but so far, little information is available how it interferes with microbial functionality and microbial-host interaction independent from weight loss. Design: A RYGB rat model was utilized and compared to sham-operated controls which were kept at matched body weight as RYGB animals by food restriction. We assessed microbial taxonomy by 16S rRNA gene sequencing and functional activity by metaproteomics and metabolomics on microbiota samples collected separately from the ileum, the cecum as well as the colon and separately analysed the lumen and mucus associated microbiota. Results: Altered gut architecture in RYGB strongly affected the occurrence of Actinobacteria, especially Bifidobacteriaceae and Proteobacteria which were increased, whereas Firmicutes were decreased, although Streptococcaceae and Clostridium perfringens were observed at higher abundances. A decrease of conjugated as well as secondary bile acids was observed in the RYGB-gut lumen. In addition the arginine biosynthesis pathway in the microbiota was altered, indicated by the changes in abundance of upstream metabolites and enzymes, resulting in lower levels of arginine and higher levels of aspartate in the colon after RYGB. Conclusion: The anatomical rearrangement in RYGB affects microbiota composition and functionality by changes in amino acid and bile acid metabolism, independent of weight loss. The shift in microbiota taxonomic structure after RYGB may be mediated by the resulting change in composition of the bile acid pool in the gut lumen.
Project description:Purpose: Gut microbiota is associated with the progression of brain tumor. However, the alterations in the gut microbiota during glioma growth and temozolomide (TMZ) therapy remains to be understood. Methods: C57BL/6 male mice were implanted with GL261 glioma cells. TMZ/sodium carboxymethyl cellulose (SCC) was administered by gavage for five consecutive days (from 8 to 12 days after implantation). Fecal samples were collected before (T0) and on days 7 (T1), 14 (T2), and 28 (T3) after implantation. The gut microbiota was analyzed using 16S ribosomal DNA sequencing followed by absolute and relative quantitation analyses. Results: Nineteen genera were altered during glioma progression with the most dramatic changes in Firmicutes and Bacteroidetes phyla. During glioma growth, Lactobacillus abundance decreased at the earlier stage of glioma development (T1), and then gradually increased (T2, T3); Intestinimonas abundance exhibited a persistent increase; Anaerotruncus showed a transient increase and then a subsequent decrease. Twenty genera altered following TMZ treatment. The enrichment of Akkermansia and Bifidobacterium was observed only at the early stage following TMZ treatment (T2), but not at the later stage (T3). Additionally, the decrease of Anaerotruncus was slighter in TMZ group at T3 comparing to the vehicle group. The abundance of Intestinimonas increased constantly during the progression of glioma, but was unaffected by TMZ. Conclusions: Glioma development and progression resulted in altered gut microbiota. TMZ reversed the decrease of Anaerotruncus in glioma at T3, and increased the abundance of Bifidobacterium with no influence on the increase of Intestinimonas. Short-term and long-term effects of TMZ treatment on the bacterial communities may be differential. This study will improve understanding the role of gut microbiota in glioma, and help develop gut microbiota as a potential therapeutic target.