Project description:Drought represents a significant stress to microorganisms and is known to reduce microbial activity and organic matter decomposition in Mediterranean ecosystems. However, we lack a detailed understanding of the drought stress response of microbial decomposers. Here we present metatranscriptomic data on the physiological response of in situ microbial communities on plant litter to long-term drought in Californian grass and shrub ecosystems.
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes. 300 samples were collected from 30 sites along the latitudinal gradient, with 10 replicates in every site
Project description:Understanding and quantifying the effects of environmental factors influencing the variation of abundance and diversity of microbial communities was a key theme of ecology. For microbial communities, there were two factors proposed in explaining the variation in current theory, which were contemporary environmental heterogeneity and historical events. Here, we report a study to profile soil microbial structure, which infers functional roles of microbial communities, along the latitudinal gradient from the north to the south in China mainland, aiming to explore potential microbial responses to external condition, especially for global climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 5.0, we showed that microbial communities were distinct for most but not all of the sites. Using substantial statistical analyses, exploring the dominant factor in influencing the soil microbial communities along the latitudinal gradient. Substantial variations were apparent in nutrient cycling genes, but they were in line with the functional roles of these genes.
Project description:The availability of organic carbon represents a major bottleneck for the development of soil microbial communities and the regulation of microbially-mediated ecosystem processes. However, there is still a lack of knowledge on how the lifestyle and population abundances are physiologically regulated by the availability of energy and organic carbon in soil ecosystems. To date, functional insights into the lifestyles of microbial populations have been limited by the lack of straightforward approaches to the tracking of the active microbial populations. Here, by the use of an comprehensiv metaproteomics and genomics, we reveal that C-availability modulates the lifestyles of bacterial and fungal populations in drylands and determines the compartmentalization of functional niches. This study highlights that the active diversity (evaluated by metaproteomics) but not the diversity of the whole microbial community (estimated by genome profiling) is modulated by the availability of carbon and is connected to the ecosystem functionality in drylands.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
2014-12-22 | GSE64368 | GEO
Project description:A soil metagenome sequencing study of shrub-encroached grassland
| PRJNA1111287 | ENA
Project description:A study of microorganisms in shrub-encroached grasslands soils
| PRJNA1111009 | ENA
Project description:A study of microorganisms in shrub-encroached grasslands soils