Project description:In SMS-CTR cells, we identified genomewide binding sites of CASZ1b. The overexpression of CASZ1b in SMS-CTR cells led to a regional epigenetic modification.
Project description:SMAC Mimetics (SMs) are currently being evaluated in clinical trials. Biomarkers are urgently needed for prediction of patient response to SMs. This study identified a characteristic gene expression pattern of SM sensitivity suitable for upfront identification of samples with high sensitivity to SMs.
Project description:Natural SIV infection of sooty mangabeys (SMs) does not progress to disease despite chronic virus replication. In contrast to pathogenic SIV infection of rhesus macaques (RMs), chronic SIV infection of SMs is characterized by low immune activation. To elucidate the mechanisms underlying this phenotype, we longitudinally assessed host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs is consistently associated with a robust innate immune response, including widespread up-regulation of interferon-stimulated genes (ISGs). Our findings indicate that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low immuneactivation of chronically SIV-infected SMs.
Project description:The aim of the experiment is to identify genome wide binding sites for the transcription factor MYCN in MYCN non-amplified and MYCN amplified human neuroblastoma cell lines. Datasets are presented for the ChIP-seq analysis in the tetracycline inducible cell line SH-SY5Y-MYCN (SH-SY5Y/6TR(EU)/pTrex-Dest-30/MYCN), derivative of the parental cell line SH-SY5Y; for noninduced cells and for 24 and 48 hours of Tet induction. Analysis for patinet matched MYCN amplified cell lines SMS-KCN and SMS-KCNR is also included.
Project description:Natural SIV infection of sooty mangabeys (SMs) does not progress to disease despite chronic virus replication. In contrast to pathogenic SIV infection of rhesus macaques (RMs), chronic SIV infection of SMs is characterized by low immune activation. To elucidate the mechanisms underlying this phenotype, we longitudinally assessed host gene expression in SIV-infected SMs and RMs. We found that acute SIV infection of SMs is consistently associated with a robust innate immune response, including widespread up-regulation of interferon-stimulated genes (ISGs). Our findings indicate that active immune regulatory mechanisms, rather than intrinsically attenuated innate immune responses, underlie the low immuneactivation of chronically SIV-infected SMs. We infected 5 SMs with SIVsmm and assessed their gene expression in RNA derived from whole blood at 3,7,10,14,30 and 180 days post-infection using Rhesus Affymetrix GeneChips. As a comparison, we also analyzed gene expression in 4 RMs infected with SIVsmm, and 8 RMs infected with SIVmac239, a classical pathogenic SIV.
Project description:Genetic and shRNA-mediated inhibition of SIX1 expression in RMS cells induces myogenic differentiation and impedes RMS tumor growth. To elucidate the mechanism by which SIX1 loss activates a differentiation program, we performed SIX1, MYOD1, and H3K27ac ChIPseq in two SIX1 knockdown SMS-CTR cell lines and one control SMS-CTR cell line to profile changes in transcriptional activity and myogenic transcription factor binding in fusion-negative Rhabdomyosarcoma.