Project description:Enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis share many traits in terms of infections they cause, but their epidemiology and ecology seem to differ in many ways. Pigs are the only known reservoir for Y. enterocolitica 4/O:3 strains while Y. pseudotuberculosis strains have been isolated from variety of sources including fresh vegetables and wild animals. A comparative genomic hybridization (CGH) analysis with a DNA microarray based on three Yersinia enterocolitica and four Yersinia pseudotuberculosis genomes was conducted to shed light on genomic differences between the enteropathogenic Yersinia. In total 99 strains isolated from various sources were hybridized and analyzed.
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Drug resistance and tolerance eliminate the therapeutic potential of antibiotics against pathogens. Antibiotic tolerance by bacterial biofilms often leads to persistent infections, but its mechanisms are unclear. To uncover antibiotic tolerance mechanisms in biofilms, we applied stable isotope labeling with amino acids (SILAC) proteomics to selectively label and compare proteomes of sensitive and tolerant subpopulations of biofilms formed by Pseudomonas aeruginosa towards colistin, a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens. Migration was essential in forming colistin-tolerant biofilm subpopulations, as colistin-tolerant cell-aggregates migrated with type IV pili, onto the top of killed biofilm. The colistin-tolerant cell-aggregates employed quorum sensing (QS) to initiate the formation of fresh colistin-tolerant subpopulations, highlighting multicellular behavior in antibiotic tolerance development. Erythromycin treatment which inhibits motility and QS, boosted biofilm eradication by colistin. This novel ‘-omics’ strategy to study antibiotic tolerant cells provides key insights for designing novel treatments against infections unsuppressed by conventional antimicrobials.