Project description:Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15K gene sequences.
Project description:Municipal wastewater effluent can impact its receiving environment. In the St. Lawrence River, male fish living downstream from Montreal exhibit increased hepatic vitellogenin, intersex, delayed spermatogenesis and altered immune function. Few studies have examined genome-wide effects associated with municipal effluent exposure in fish to decipher the mechanisms of toxicity. The present objective was to identify hepatic cellular signaling pathways in fathead minnows following exposure to municipal wastewater effluent. Immature minnows were exposed for 21 days to either 0% (Control) or 20% municipal effluent, the highest concentration in the St. Lawrence River. Hepatic RNA was extracted and used to hybridize a fathead minnow oligonucleotide microarray containing approximately 15K gene sequences. Sixteen samples were examined, 8 control samples and 8 exposed samples.
Project description:One of the most widely used drugs in municipal wastewater treatment effluents and soil is carbamazepine, a commonly prescribed antidepressants and antiepileptic drug. Carbamazepine exerts an intrinsic biological activity on the nervous system, thus may induce ecotoxicological effects on non-target organisms. Earthworms, one of the essential indicator species of soil health, accumulate biosolid fertilisers and wastewater contaminants. In this project, earthworms (Dendrobaena veneta) were treated with carbamazepine to explore their uptake dynamics, molecular and life cycle endpoints. By conducting transcriptomic profiling of different tissues in an organism exposed to carbamazepine assists in defining detoxification and neural system responses in the terrestrial invertebrate.
2025-05-21 | GSE268697 | GEO
Project description:Assessing microbial pathogens in municipal wastewater
Project description:Suppression PCR-based selective enrichment sequencing for pathogen and antimicrobial resistance detection on cell-free DNA in sepsis
Project description:In this study, we exposed Caenorhabditis elegans wild types N2 to water collected from six sources in the Dutch village Sneek. The sources were: wastewater from a hospital, a community (80 households), a nursing home, influent into the local municipal wastewater treatment plant, effluent of the wastewater treatment plant, and surface water samples. The goal of the experiment was to determine if C. elegans can be used to identify pollutants in the water by transcriptional profiling. Age synchronized worms at developmental L4 larval stage were exposed to treatment for 24 hours. After flash freezing the samples, RNA was isolated, labeled and hybridized on oligo microarray (Agilent) slides.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 M-NM-<m). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents. In this study, we examined the gene expression alteration in human hepatoma cell line, HepG2 exposed to the raw wastewater, effluents from three types of membrane bioreactors (MBRs), and the activated sludge process. Wastewater DNA microarray with 8795 human genes. MQ water was used as control. For duplicate, two dishes were prepared for each sample and individually treated in parallel.
Project description:The transcriptome analysis by the human DNA microarray was applied to evaluate the impacts of whole wastewater effluents from the membrane bioreactors (MBRs) and the activated sludge process (AS), on the biological processes of human hepatoma HepG2 cells. The three conventional bioassays (i.e., cytotoxicity tests and bioluminescence inhibition test) and chemical analysis of the domestic effluent standards were conducted in parallel since they are well-established methods with previous applications to wastewater. A significant variation of effluent quality was sdemonstrated among the tested effluents despite that all effluents met the 40 national effluent standards. The three conventional bioassays supported the result of the transcriptome analysis, indicating the comparable or even higher sensitivity of the new assay. The most superior effluent quality was found in the MBR operated at a relatively long sludge retention time (i.e., 40 days) and small membrane pore size (i.e., 0.03 μm). In addition, functional analysis of the differentially expressed genes revealed that the effluents made various impacts on the cellular functions, suggesting the transcriptome analysis by DNA microarray as more comprehensive, rapid and sensitive tool to detect multiple impacts of the whole effluents. Moreover, the potential genetic markers were proposed to quantitatively evaluate the treatability of the wastewater effluents.