Project description:This study characterizes the genomic and immunophenotypic landscape of pancreatic ductal adenocarcinoma in carriers of germline pathogenic variants in ATM to improve our understanding of the mechanistic pathways involved in pancreas cancer development in germline ATM carriers and aid in the identification of targeted therapeutic strategies.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men. KC (Atm+/+) and AKC (Atm-/-) mouse pancreata at 5 weeks old (n= 3 KC; n= 3 AKC) or 10 weeks old (n=3 KC; n=4 AKC) were subjected to microarray analysis.
Project description:Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.
Project description:To further development of our lncRNA and mRNA expression approach to pancreatic ductal adenocarcinoma(PDAC), we have employed lncRNA and mRNA microarray expression profiling as a discovery platform to identify lncRNA and mRNA expression in pancreatic ductal adenocarcinoma.Human pancreatic ductal adenocarcinoma tissues and normal pancreatic tissues from PDAC donors and other duodenum diseases donors. analyze mRNA and lncRNA expression in pancreatic ductal adenocarcinoma (PDAC) by microarray platform
Project description:With the advent of cancer immunotherapy, intense investigation has been focused on tumor-infiltrating immune cells. With only a fraction of patients responding to these new therapies, a better understanding of all elements of the tumor microenvironment (TME) that may influence therapeutic outcome is needed. Stromal elements of the TME, chiefly fibroblasts, have emerged as potential contributors to tumor progression and most recently resistance to immunotherapy, but their precise composition and clinical relevance remain incompletely understood. Here we use single-cell transcriptomics to chart the fibroblastic landscape during pancreatic ductal adenocarcinoma (PDAC) progression in animal models, identifying two healthy tissue fibroblast subsets that co-evolve along individual trajectories into four subsets of carcinoma-associated fibroblasts (CAFs).
Project description:To further develop our understanding of the gene expression signature of pancreatic ductal adenocarcinoma Gene expression signatures in macrodissected resected pancreatic ductal adenocarcinoma specimens
Project description:No reliable predictors of susceptibility to gemcitabine chemotherapy exist in pancreatic ductal adenocarcinoma. MicroRNAs (miR) are epigenetic gene regulators with tumorsuppressive or oncogenic roles in various carcinomas. This study assesses chemoresistant PDAC for its specific miR expression pattern. Gemcitabine-resistant variants of two mutant p53 human pancreatic adenocarcinoma cell lines were established. MicroRNA screening was investigated by microarray.