Project description:The Escherichia coli strain Nissle 1917 (EcN) is used as a probiotic for the treatment of certain gastrointestinal diseases in several European and non-European countries. In vitro studies showed EcN to efficiently inhibit the production of Shiga toxin (Stx) by Stx producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC). The occurrence of the latest EHEC serotype (O104:H4) responsible for the great outbreak in 2011 in Germany was due to the infection of an enteroaggregative E. coli by a Stx 2-encoding lambdoid phage turning this E. coli into a lysogenic and subsequently into a Stx producing strain. Since EHEC infected persons are not recommended to be treated with antibiotics, EcN might be an alternative medication. However, because a harmless E. coli strain might be converted into a Stx-producer after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN towards not only stx-phages but also against the lambda phage. This resistance was not based on the lack of or by mutated phage receptors. Rather the expression of certain genes (superinfection exclusion B (sieB) and a phage repressor (pr) gene) of a defective prophage of EcN was involved in the complete resistance of EcN to infection by the stx- and lambda phage. Obviously, EcN cannot be turned into a Stx producer. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people.
Project description:Here we have developed a method that combines chromatin immunoprecipitation with next-generation sequencing (ChIP-Seq) and mathematical modeling to quantify RecA protein binding during the active repair of a single DSB in the chromosome of Escherichia coli. Examination of RecA binding during double-strand break repair in Escherichia coli
Project description:Primary objectives: The study investigates whether a Escherichia coli Nissle-suspenison has a (preventive) antidiarrheal effect in patients with tumors who are treated with chemotherapeutic schemes which are associated with increased occurances of diarrhea. Diarrhea caused by treatment are thought to be reduced in intensity and/or frequency by the treatment with Escherichia coli Nissle-Suspension.
Primary endpoints: Common toxicity criteria (CTC) for diarrhea
Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Nucleic Acid Sequencing for the study of division induced double strand breaks in the terminus region of Escherichia coli cells lacking RecBCD DNA repair enzymes.
Project description:Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 are known, including food of animal origin and produce. The ecology of this pathogen outside its human host is largely unknown. One third of its annotated genes still are hypothetical. To identify genetic determinants expressed under environmental factors, we applied strand-specific RNA-sequencing of strain E. coli EDL933 under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes, only 144 are transcriptionally completely inactive under all conditions. Of 1,771 hypothetical genes, 1,672 exhibit significant transcriptional signals under at least one condition. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up regulated on radish sprouts, cattle feces, or in the presence of antibiotics. For instance, azoR is biotechnologically important, but its environmental function has been elusive. This gene is highly active on radish sprouts. Further, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Thus, environmental transcriptomics uncovers hitherto unknown gene functions and regulatory patterns of Escherichia coli O157:H7.
Project description:Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 are known, including food of animal origin and produce. The ecology of this pathogen outside its human host is largely unknown. One third of its annotated genes still are hypothetical. To identify genetic determinants expressed under environmental factors, we applied strand-specific RNA-sequencing of strain E. coli EDL933 under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes, only 144 are transcriptionally completely inactive under all conditions. Of 1,771 hypothetical genes, 1,672 exhibit significant transcriptional signals under at least one condition. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up regulated on radish sprouts, cattle feces, or in the presence of antibiotics. For instance, azoR is biotechnologically important, but its environmental function has been elusive. This gene is highly active on radish sprouts. Further, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Thus, environmental transcriptomics uncovers hitherto unknown gene functions and regulatory patterns of Escherichia coli O157:H7. Eleven different conditions were sequenced on the SOLiD system. Of two of the condtions, spinach medium and LB-nitrite, technical replicates were sequenced. Of LB medium and radish sprouts, biological replicates were sequenced on an Illumina MiSeq.
Project description:we designed a CRISPR-based chromosome-doubling technique to construct an artificial diploid Escherichia coli cell. The stable diploid E. coli was confirmed by quantitative PCR and third-generation genome sequencing.
2022-12-29 | GSE192799 | GEO
Project description:Isolation and characterization of Escherichia coli phages
Project description:In the bacterium Escherichia coli, RecG directs DNA synthesis during the repair of DNA double-strand breaks by homologous recombination. Examination of RecA binding during double-strand break repair in Escherichia coli in the presence and absence of RecG protein