Project description:Japanese eel (Anguilla japonica) is a migratory fish with high economic value. The gonads of eels cultured in captivity do not mature naturally, and under artificial ripening, their hypothalamic-pituitary-gonadal axis is activated and the maturation coefficient of the gonads is significantly increased. Previous studies on eel breeding have focused on reproductive physiological processes, with limited insight into the molecular mechanisms in the pituitary gland that influence ovarian development. To address these limitations, we used pituitary tissues of female Japanese eels as samples for Pacbio Iso-Seq and RNA-Seq combining analyses, selecting pre-matured (PP) and after-matured (AP) samples to investigate DEGs and signal pathways regulating gonadal development in the pituitary gland, respectively.
Project description:Background: The Japanese eel (Anguilla japonica) holds significant economic value in East Asia, but limitations in understanding its reproductive biology have hindered advancements in artificial breeding techniques. Previous research has primarily focused on conserved sex differentiation genes, offering limited insights into the broader molecular mechanisms driving gonadal development and sexual dimorphism. To address these limitations, this study aims to investigate key genes and pathways involved in gonadal development through a comprehensive transcriptomic analysis of male and female eel gonads. Results: PacBio Iso-Seq and Illumina RNA-Seq technologies were combined to conduct a full-length transcriptome analysis of male and female Japanese eel gonads at a post-differentiation, pre-maturation stage. A total of 24661 unigenes were identified in ovaries and 15023 in testes, along with genomic regulatory elements such as transcription factors, simple sequence repeats, and long non-coding RNAs. Additionally, 1,210 differentially expressed genes were detected. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed significant pathways involved in cell cycle regulation, metabolic processes, apoptosis, and hormone activity. Notably, several reproductive-related genes, including bambi, ccnb1, cdc20, gdf9, prlh, ccdc39, chrebp, tspo, syce3, and ngb, demonstrated significant dimorphic expression in eel gonads. Conclusions: This study provides valuable insights into the molecular mechanisms of gonadal differentiation and sexual dimorphism in Japanese eels. The findings expand the genetic resources available for the eel breeding industry and could facilitate the development of improved artificial breeding techniques focused on reproductive development.
Project description:We investigated salinity adaptation during the migration from freshwater to seawater of European eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water and sea water adapted silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.
Project description:We investigated the transition from juvenile yellow to the adult sexually maturing, migrating silver eel (Anguilla anguilla) by examining the hypothesis that: The brain is the central organ for the co-ordination of environmental cues (day length, photoperiod, temperature and environmental salinity) with the anatomical and physiological adaptations which accompany pre-migrational morphogenesis and the osmoregulatory plasticity seen in post-migrational, salinity-adapted fish. We have characertised the mRNA expression profiles for the brains of fresh water, yellow and silver eel using a highly representative brain cDNA microarray. The array comprises 5760 cDNA clones from A.anguilla ranging from 0.5 -10 kb and an estimated redundancy of > 5 %.
Project description:Since the early 1980s, the population of European eels (Anguilla anguilla) has dramatically declined. Nowadays, the European eel is listed on the red list of threatened species (IUCN Red List) and is considered as critically endangered of extinction. Pollution is one of the explanations of the collapse of this species. Among their possible effects, pollutants gradually accumulated in eels during their somatic growth phase (yellow eel stage) would be remobilized during their reproductive migration leading to potential toxic events in gonads. The aim of this study was to investigate the potential effect of pollution on the gonad development of wild female silver eels. Female silver eels from two sites with differing contamination levels were artificially matured. Transcriptomic analyses by means of a 1000 candidate gene cDNA microarray were performed on gonads after 11 weeks of maturation. The results showed that the transcription levels of several genes that were associated to the gonadosomatic index (GSI) were involved in mitotic cell division but also in spermatogenesis. Genes associated to pollution were mainly involved in the mechanisms of protection against oxidative stress, in DNA repair, in the purinergic signaling pathway and in steroidogenesis, suggesting an impairment of gonad development in eels from the polluted site. This was in agreement with the fact that eels from the reference site showed a higher gonad growth in comparison to contaminated fish.
Project description:An European eel-specific microarray platform was developed to identify genes involved in response to pollutants. A comparative analysis of gene expression was conducted between European eel Anguilla anguilla individuals from lowly-polluted Wijmeers pond at Uitbergen (Belgium), highly-polluted Hazewinkel pond at Willebroek (Belgium), extremely-polluted Dessel-Schotel canal at the locations of Schotel (Belgium) and low polluted Bolsena lake (Italy) environments.