Project description:We have developed a new model of the human airway epithelial cell by deriving the cell-specific metabolic reactions identified from (i) a draft automated model by Wang et al. 2017 (ii) gene expression datasets of the human airway epithelial cell (Deprez et al., 2020; Braga et al., 2020). (iii) We obtained additional reactions, gene-to-reaction associations and pathways (that were not in the automated model) from HumanCyc (Trupp et al., 2010) and (iv) performed stochastic and dynamic simulations on the model generated including manual curations from primary literature and Recon3D (Brunk et al., 2018). (v) We added the viral biomass maintenance function into the model, previously developed for the macrophage cell (Renz et al. 2020) to develop the new integrated model of the human airway epithelial cell and the SARS-CoV-2 virus, (iBBEC4660).
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes