Project description:Isolation of Bacillus velezensis XZ3-6 With Antagonistic Activity Against Apple Canker and Transcriptome Analysis Uncover Its Biocontrol Mechanism
| PRJNA1253421 | ENA
Project description:Bacillus species as Biological Control Agents for tomato canker.
Project description:miRNAs were important regulators involving in plant-pathogen interactions. However, their roles in apple response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the bark tissues of apple twig (Malus domestica Borkh “Fuji”) inoculated with Vm (IVm) and PDA medium (control, BMd). Among the all miRNAs, 23 miRNAs were specifically isolated in BMd and 39 miRNAs were specifically isolated in IVm. Compared with BMd, the expression of 294 miRNAs decreased, and 172 miRNAs increased in IVm, respectively. We also identified the target genes of these miRNAs using degradome sequencing technology. In total, 353 differentially expressed miRNAs during the pathogen infection were detected to target 1 077 unigenes with 2 251 cleavage sites. Based on GO and KEGG analysis, the genes were found to be mainly related to transcription regulation and signal transduction. We further selected 17 miRNAs and 22 corresponding target genes to detect the expression profiles during pathogen infection. The results indicate that most of them are involved in apple twig-Vm interaction. What’s more, miRNAs and their corresponding target genes seem to regulate the apple twig-Vm interaction by forming many complicated regulation networks. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, and most of them were disease resistance related genes. More important, the feedback regulation of sRNA pathway in apple twig was much more complex and critical in the interaction between apple bark tissue and V. mali. The results provide insights into the crucial functions of miRNAs in the woody plant, apple tree-Vm interaction.
Project description:Cladobotryum mycophilum, the causative agent of cobweb disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Cobweb disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant Cladobotryum strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of C. mycophilum to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. Exposure of 48 hr C. mycophilum cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 57% reduction in biomass (P < 0.0002), a disruption in hyphal structure and morphology, and the appearance of aurofusarin in culture medium. Proteomic analysis of B. velezensis culture filtrate revealed the presence of peptidase 8 (subtilisin), peptide deformylase and probable cytosol aminopeptidase which are known to induce cell disruption. Characterisation of the proteomic response of C. mycophilum following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (ISWI chromatin-remodelling complex ATPase ISW2 (+24 fold), carboxypeptidase Y precursor (+3 fold) and calmodulin (+2 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-26 fold), 40S ribosomal protein S21 (-3 fold) and carbohydrate metabolism, (L-xylulose reductase (-10 fold). The results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of C. mycophilum and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:Lecanicillium fungicola, the causative agent of dry bubble disease on Agaricus bisporus results in significant crop losses for mushroom growers worldwide. Dry bubble disease is treated through strict hygiene control methods and the application of chemical fungicides but an increase in fungicide resistant L. fungicola strains has resulted in a need to develop alternative biocontrol treatment methods. The aim of the work presented here was to evaluate the response of L. fungicola to a Bacillus velezensis isolate to assess its potential as a novel biocontrol agent. The bacterial species in Serenade, a commercially available biocontrol treatment was also included in this analysis. Exposure of 48 hr L. fungicola cultures to 25% v/v 96h B. velezensis culture filtrate resulted in a 45% reduction in biomass (P < 0.0002) and a disruption in hyphal structure and morphology. Characterisation of the proteomic response of L. fungicola following exposure to B. velezensis culture filtrate revealed an increase in the abundance of a variety of proteins associated with stress response (Norsolorinic acid reductase (+8 fold), isocitrate lyase (+7 fold) and MMS19 nucleotide excision repair protein (+4 fold). There was also a decrease in the abundance of proteins associated with transcription (40S ribosomal protein S30 (-33 fold), 60S ribosomal protein L5 (-45 foldThe results presented here indicate that B. velezensis culture filtrate is capable of inhibiting the growth of L. fungicola and inducing a stress response, thus indicating its potential to control this important pathogen of mushrooms.
Project description:Winter dormancy is an adaptative mechanism that temperate and boreal trees have developed to protect their meristems against low temperatures. In apple trees (Malus domestica), cold temperatures induce bud dormancy at the end of summer/beginning of the fall. Apple buds stay dormant during winter until they are exposed to a period of cold, after which they can resume growth (budbreak) and initiate flowering in response to warm temperatures in spring. It is well-known that small RNAs modulate temperature responses in many plant species, but however, how small RNAs are involved in genetic networks of temperature-mediated dormancy control in fruit tree species remains unclear. Here, we have made use of a recently developed ARGONAUTE (AGO)-purification technique to isolate small RNAs from apple buds. A small RNA-seq experiment resulted in the identification of small RNAs that change their pattern of expression in apple buds during dormancy.
Project description:Human volunteers (N=143; 98 females and 45 males; aged 18-45 years) consumed one litre of blueberry-apple juice per day for four weeks. Before and after the intervention blood was drawn and lymphocytes were isolated for subsequent RNA isolation. Each participant acted as his own control.
Project description:The beneficial effects of feeding probiotic Bacillus subtilis DSM 32315 (BS) and Bacillus velezensis CECT 5940 (BV) to chickens in vivo are well-documented, with potential immune modulation as a key mechanism. In this study, we investigated the direct interactions of chicken peripheral blood mononuclear cells (PBMCs) with BS or BV in vitro through whole transcriptome profiling and cytokine array analysis. Transcriptome profiling revealed 20 significantly differentially expressed genes (DEGs) in response to both Bacillus treatments, with twelve DEGs identified in BS-treated PBMCs and eight in BV-treated PBMCs. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated significant regulation of immune-related pathways by both BS and BV. Notably, BS treatment upregulated genes associated with immune cell surface markers (CD4, CD25, CD28), anti-inflammatory cytokine interleukin-10 (IL-10), and C-C motif chemokine ligand 5 (CCL5), while downregulating the gene encoding pro-inflammatory IL-16. BV treatment similarly affected genes associated with immune cell surface markers, IL-16, and CCL5, with no impact on the gene encoding IL-10. Both treatments induced higher expression of the gene encoding the avian β-defensin 1 (AvBD1). The results of this in vitro study indicate an immunomodulatory effect of BS and BV in chicken PBMCs by regulating genes involved in anti-inflammatory, bacteriostatic, protective, and pro-inflammatory responses. Consequently, BS and BV may serve to augment the immune system’s capacity to defend against infection by modulating immune responses and cytokine expression. Thus, the administration of these probiotics holds promise for reducing reliance on antimicrobials in farming practices.