Project description:There are numerous examples in plants, where certain organs or developmental stages are desiccation tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation tolerant as for example the tubers of yellow nutsedge (Cyperus esculentus) that also store larger amounts of lipids similar to seeds. Interestingly, the closest relative purple nutsedge (Cyperus rotundus) generates tubers that do not accumulate oil and are not desiccation tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the closest relative purple nutsedge (Cyperus rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid-droplet enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homolog to ABSCISIC ACID INSENSITIVE3, WRINKLED1 and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Project description:In order to more accurately discover the cause of drug resistance in tumor treatment, and to provide a new basis for precise treatment.
Therefore, based on the umbrella theory of precision medicine, we carried out this single-center, prospective, and observational study to include patients with liver metastases from colorectal cancer. By combining genome, transcriptome, and proteomic sequencing data, we established a basis for colorectal cancer liver Transfer the multi-omics data of the sample, describe the reason for the resistance of the first-line treatment, and search for new therapeutic targets.
Project description:We have sequenced a wild Prunus mume and constructed a reference sequence for this genome. In order to improve quality of gene models, RNA samples of five tissues (bud, leaf, root, stem, fruit) were extracted from the Prunus mume. To investigate tissue specific expression using the reference genome assembly and annotated genes, we extracted RNA samples of different tissues and conducted transcriptome sequencing and DEG analysis. Five RNA pools were created corresponding to different tissues of the Prunus mume.
Project description:In this study, we aim to present a global view of transcriptome dynamics in different tissues/organs/developmental stage in chickpea. We generated about ~31-95 million reads from each of 94 libraries representing 32 different tissues/organs using Illumina platform. We generated a hybrid assembly of these data along with PacBio data to produce full-length transcriptome assembly. We mapped the reads to the transcriptome assembly for estimation of the abundance of coding and long non-coding transcripts in different tissue samples. The transcriptome dynamics was studied by differential and tissue-specific expression analyses, and co-expression network and transcriptional regulatory network analyses.