Project description:Before and after negative pressure treatment in 3 diabetic foot patients, the granulation tissue of foot ulcer was sampled and analyzed quantitatively by LC-MS /MS method.
Project description:Introduction: We investigated the role and mechanism of hsa-HLA-DRB1 in the development and progression of diabetic foot ulcers. Methods: High-throughput sequencing was performed on three normal foot trauma tissues and diabetic foot ulcer tissues. The circRNAs with significant differences were identified. The downstream miRNAs were predicted by miRanda and RNAhybrid databases, and the mRNAs were predicted by the TargetScan database. Validation was performed with CCK8, flow cytometry, trabecular scratch assay, tubule generation assay, Western blot, dual luciferase assay, and RT-qPCR. Results: High-throughput sequencing identified 461 significantly different circRNAs, of which 260 were up-regulated and 201 down-regulated. Compared to normal tissue, hsa-HLA-DRB1 was highly expressed in diabetic foot ulcers. The hsa-HLA-DRB1/miRNA_12118/FLT-1 axis was constructed. In vitro, we found that HLA-DRB1 overexpression inhibited cell viability, wound healing, and tubule formation, promoted apoptosis, and enhanced FLT-1 expression in HUVECs. Conclusion: The upregulation of hsa-HLA-DRB1 may promote diabetic foot development by targeting miRNA_12118 and acting on FLT-1. Therefore, our study highlights the key role of the hsa-HLA-DRB1/miRNA_12118/FLT-1 axis in diabetic foot trauma.
Project description:To investigate mRNA Expression profile and associated signaling pathways in the treatment of diabetic foot ulcer healing by tibial cortex transverse distraction. Methods: Tissue samples were collected from the wound edge before and after the surgery. After reference genome transcriptome sequencing and subsequent bioinformatics analysis, the differentially expressed genes and related pathways were explored, and functional analysis of important genes and pathways was conducted.
Project description:Objective: This study aims to investigate the diversity of fibroblasts present in diabetic ulcers and their impact on the wound healing process, as well as to evaluate the effectiveness of Platelet-Rich Plasma (PRP) therapy in the management of diabetic ulcers. Methodology: The single-cell dataset GSE165816 from the GEO database was utilized to analyze DFU-healer and DFU-nonhealer samples in order to evaluate variations in fibroblasts. Functional characteristics of fibroblasts were investigated through analyses of cell communication, transcription factors, and pseudotime analysis. Additionally, a diabetic ulcer rat model was established to compare the therapeutic effects of PRP, followed by histological and transcriptomic sequencing analyses. Result: Single-cell sequencing analysis identified a greater abundance of fibroblasts in the group of diabetic foot ulcer (DFU) patients who exhibited healing. The findings from biological informatics analysis emphasized the critical role of fibroblasts in the wound healing process. Treatment with PRP notably enhanced wound healing in diabetic ulcers in rats, and transcriptomic analysis indicated that gene expression levels post-PRP treatment resembled those of the non-diabetic ulcer group, with a strong association to fibroblasts. Conclusion: Fibroblasts are essential in the process of healing diabetic ulcers, as certain transcription factors have the potential to facilitate wound closure. PRP therapy has been shown to enhance the healing process in diabetic ulcer rat models, possibly through the modulation of gene expression and the promotion of extracellular matrix arrangement. This research offers novel insights and potential therapeutic approaches for managing diabetic ulcers.
Project description:Recent study has revealed that long non-coding RNAs (lncRNAs) perform as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. We found lncRNA WAKMAR1 is significantly down-regulated in wound-edge keratinocytes from venous ulcer and diabetic foot ulcer compared to the normal wounds. To study the genes regulated by WAKMAR1, we transfected lncRNA GapmeRs into human primary epidermal keratinocytes to inhibit its expression. We performed a global transcriptome analysis of keratinocytes upon inhibition of WAKMAR1 using Affymetrix arrays. We performed a global transcriptome analysis of keratinocytes upon inhibition of WAKMAR1 using Affymetrix arrays.
Project description:We show that a combinatorial upregulation of SOX2 and hyperglycemia in cutaneous keratinocytes triggers a pro-healing signature and increased neutrophil chemoattraction, putatively by Ccr2, Ccr5, and Csf3r signaling. Neutrophil depletion and deregulation through the TREM1/FOXM1 pathway are directly implicated in diabetic foot ulcer (DFU) pathophysiology. Our results highlight the role of neutrophil recruitment in wound healing and can be used to explore potential therapeutic targets for DFUs in patients.