Project description:To understand difference between SFZ cells and costal chondrocytes, total RNAs from SFZ cells and costal chondrocytes were analyzed by microarray.
Project description:Ocean global warming affects the distribution, life history and physiology of marine life. Extreme events, like marine heatwaves, are increasing in frequency and intensity. During sensitive developmental windows of fish, the consequences may be long-lasting and mediated by epigenetic mechanisms. Here, we used adult European sea bass as a model to study the effects of a marine heatwave during development. We measured DNA methylation and gene expression in four tissues (brain, muscle, liver and testis) and detected differentially methylated regions (DMRs). Six genes were differentially expressed and contained DMRs three years after exposure to increased temperature, indicating direct phenotypic consequences and representing persistent changes. Interestingly, nine genes contained DMRs around the same genomic regions across tissues, therefore consisting of common footprints of developmental temperature in environmentally responsive loci. These loci are, to our knowledge, the first metastable epialleles (MEs) described in fish. MEs may serve as biomarkers to infer past life history events linked with persistent consequences. These results highlight the importance of subtle phenotypic changes mediated by epigenetics to extreme weather events during sensitive life stages. Also, to our knowledge, it is the first time the molecular effects of a marine heatwave during the lifetime of individuals are assessed. MEs could be used in surveillance programs aimed at determining the footprints of climate change on marine life. Our study paves the way for the identification of conserved MEs that respond equally to environmental perturbations across species. Conserved MEs would constitute a tool of assessment of global change effects in marine life at a large scale.
Project description:Streptococcus pyogenes (Group A Streptococcus: GAS) is a major human pathogen that causes streptococcal pharyngitis, skin and soft-tissue infections, and life-threatening conditions such as streptococcal toxic shock syndrome (STSS). A large number of virulence-related genes are encoded on GAS genomes, which are involved in host-pathogen interaction, colonization, immune invasion, and long-term survival within hosts, causing the diverse symptoms. Here, we investigated the interaction between GAS-derived extracellular vesicles and host cells in order to reveal pathogenicity mechanisms induced by GAS infection.
Project description:Periodic light–dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.
Project description:Periodic light–dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.
Project description:Polyamines, such as putrescine and spermidine, are aliphatic organic compounds with multiple amino groups. They are found ubiquitously in marine systems. However, compared with the extensive studies on the concentration and fate of other dissolved organic nitrogen compounds in seawater, such as dissolved free amino acids (DFAA), investigations of bacterially-mediated polyamine transformations have been rare. Bioinformatic analysis identified genes encoding polyamine transporters in 74 of 109 marine bacterial genomes surveyed, a surprising frequency for a class of organic nitrogen compounds not generally recognized as an important source of carbon and nitrogen for marine bacterioplankton. The genome sequence of marine model bacterium Silicibacter pomeroyi DSS-3 contains a number of genes putatively involved in polyamine use, including six four-gene ATP-binding cassette transport systems. In the present study, polyamine uptake and metabolism by S. pomeroyi was examined to confirm the role of putative polyamine-related genes, and to investigate how well current gene annotations reflect function. A comparative whole-genome microarray approach (Bürgmann et al., 2007) allowed us to identify key genes for transport and metabolism of spermidine in this bacterium, and specify candidate genes for in situ monitoring of polyamine transformations in marine bacterioplankton communities.