Project description:Background. Hematopoietic cell transplantation (HCT) is a potentially curative therapy for a wide range of pediatric malignant and nonmalignant diseases. However, complications, including blood stream infection (BSI) remain a major cause of morbidity and mortality. While certain bacteria that are abundant in the oral microbiome, such as S. mitis, can cause BSI, the role of the oral microbial community in the etiology of BSI is not well understood. The finding that the use of xylitol wipes, which specifically targets the cariogenic bacteria S. mutans is associated with reduced BSI in pediatric patients, lead us to investigate dental caries as a risk factor for BSI. Methods. A total of 41 pediatric patients admitted for allogenic or autologous HCT, age 8 months to 25 years, were enrolled. Subjects with high dental caries risk were identified as those who had dental restorations completed within 2 months of admission for transplant, or who had untreated decay. Fisher’s exact test was used to determine if there was a significant association between caries risk and BSI. Dental plaque and saliva were collected on a cotton swab from a subset of 4 high caries risk (HCR) and 4 low caries risk (LCR) children following pretransplant conditioning. 16SrRNA sequencing was used to compare the microbiome of HCR and LCR subjects and to identify microbes that were significantly different between the 2 groups. Results. There was a statistically significant association between caries risk and BSI (p<0.035) (Fisher’s exact test). Multivariate logistic regression analysis showed children in the high dental caries risk group were 21.39 times more likely to have BSI, with no significant effect of age or mucositis severity. HCR subjects showed significantly reduced microbial alpha diversity as compared to LCR subjects. LEfse metagenomic analyses, showed the oral microbiome in HCR children enriched in order Lactobacillales. This order includes Streptococcus and Lactobacillus, both which contain bacteria primarily associated with dental caries. Discussion. These findings support the possibility that the cariogenic microbiome can enhance the risk of BSI in pediatric populations. Future metagenomic analyses to measure microbial differences at, before, and after conditioning related to caries risk, may further unravel the complex relationship between the oral microbiome, and whether it affects health outcomes such as BSI.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have a potent ability to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. In this study, we observed supplementation with 1.5% arginine (final concentration) had inhibitory effects on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. Deep-sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in a chemically defined medium with and without 1.5% arginine in neutral and acidic pH conditions and under oxidative stress conditions revealed interesting results. The results provide new insights into the mechanisms of action by which arginine inhibits dental caries through direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen. The findings significantly enhance our understanding of the genetics and physiology of this cariogenic pathogen.
Project description:We applied metagenomic shotgun sequencing to investigate the effects of ZEA exposure on the change of mouse gut microbiota composition and function.
Project description:The study aims to assess gene expression in plaque samples collected from twin pairs that are both concordant and discordant with respect to dental Caries diagnosis. File Naming Conventions are as follows: Patient ID : 4 digit identifier Diagnosis : Caries Negative(CN) or Caries Positive(CP) Type of Twin: Monozygotic(MZ)or Dizygotic(DZ) Pair to xxxx: 4 digit twin identifier maps to the Patient ID E.g: 2126_CP_MZ_PairTo_2125_fastqc - 2126 is a caries positive patient and pairs to monozygotic twin pair 2125. Plaque samples from twin pairs that are both concordant and discordant with respect to dental Caries diagnosis are enriched for bacterial messenger RNA to study the gene expression differences in the samples. RNA was extracted from RNAprotect (Qiagen, In c.) treated dental plaque scrapings from 38 patients. Amplified cDNA was created and rRNA sequence was removed by subtractive hybridization. Individual patient samples were run on a single lane of an Illumina Genome Analyzer.
Project description:The composition of the salivary microbiota has been reported to differentiate between patients with periodontitis, dental caries and orally healthy individuals. Thus, the purpose of the present investigation was to compare metaproteomic profiles of saliva in oral health and disease. Stimulated saliva samples were collected from 10 patients with periodontitis, 10 patients with dental caries and 10 orally healthy individuals. Samples were analyzed by means of shotgun proteomics. 4161 different proteins were recorded out of which 1946 and 2090 were of bacterial and human origin respectively. The human proteomic profile displayed significant overexpression of the complement system and inflammatory mediators in periodontitis and dental caries. Bacterial proteomic profiles and functional annotation were very similar in health and disease. Data revealed multiple potential salivary proteomic biomarkers of oral disease. In addition, comparable bacterial functional profiles were observed in periodontitis, dental caries and oral health, which suggest that the salivary microbiota predominantly thrives in a planktonic state expressing no characteristic disease-associated metabolic activity. Future large-scale longitudinal studies are warranted to reveal the full potential of proteomic analysis of saliva as a biomarker of oral health and disease.
2016-08-15 | PXD004319 | Pride
Project description:Microbiome study of dental caries sample
Project description:The study aims to assess gene expression in plaque samples collected from twin pairs that are both concordant and discordant with respect to dental Caries diagnosis. File Naming Conventions are as follows: Patient ID : 4 digit identifier Diagnosis : Caries Negative(CN) or Caries Positive(CP) Type of Twin: Monozygotic(MZ)or Dizygotic(DZ) Pair to xxxx: 4 digit twin identifier maps to the Patient ID E.g: 2126_CP_MZ_PairTo_2125_fastqc - 2126 is a caries positive patient and pairs to monozygotic twin pair 2125. Plaque samples from twin pairs that are both concordant and discordant with respect to dental Caries diagnosis are enriched for bacterial messenger RNA to study the gene expression differences in the samples.