Project description:Purpose: The goal of this study was to elucidate the collateral effects associated with OXA-23 overexpression on the Acinetobacter baumannii global transcriptome. Results: Besides the 99.73-fold increase in blaOXA-23 transcript upon IPTG induction, no other transcripts showed more than a 2-fold change compared to the wildtype control. This suggests that OXA-23 over expression to levels similarly observed in multi drug resistant A. baumannii clinical isolates does not effect the transcriptome.
Project description:Nosocomial outbreaks of infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious threat to human health. The phosphoproteomics of pathogenic bacteria have been investigated for their role in virulence regulation networks. In this study, we analyzed the phosphoproteomics of two clinical isolates of A. baumannii: imipenem-sensitive strain SK17-S and -resistant strain SK17-R.
Project description:Acinetobacter baumannii is an emerging nosocomial pathogen that causes severe infections such as pneumonia or blood stream infections. As the incidence of multidrug-resistant A. baumannii infections in intensive care units increases, the pathogen is considered of greater clinical concern. Little is known about the molecular interaction of A. baumannii with its host yet. In order to study the host cell response upon A. baumannii infection, a complexome analysis was performed. For this, we identified a virulent ( A. baumannii 2778) and a non virulent (A. baumannii 1372) clinical isolate of genetic similarity > 95 % (both isolates from IC 2 harboring OXA 23). HUVECs were infected with each strain and enriched mitochondrial fraction was used for complexome profiling. Complexome analysis identified dramatic reduction of mitochondrial protein complexes in the strain of greater virulence.
2023-04-10 | PXD035235 | Pride
Project description:Epidemiology of clinical carbapenem- resistant Acinetobacter baumannii isolates in China
Project description:Acinetobacter baumannii is often highly resistant to multiple antimicrobials, posing a risk of treatment failure, and colistin is a "last resort" for treatment of the bacterial infection. However, colistin resistance is easily developed when the bacteria are exposed to the drug, and a comprehensive analysis of colistin-mediated changes in colistin-susceptible and -resistant A. baumannii is needed. In this study, using an isogenic pair of colistin-susceptible and -resistant A. baumannii isolates, alterations in morphologic and transcriptomic characteristics associated with colistin resistance were revealed. Whole-genome sequencing showed that the resistant isolate harbored a PmrBL208F mutation conferring colistin resistance, and all other single-nucleotide alterations were located in intergenic regions. Using scanning electron microscopy, it was determined that the colistin-resistant mutant had a shorter cell length than the parental isolate, and filamented cells were found when both isolates were exposed to the inhibitory concentration of colistin. When the isolates were treated with inhibitory concentrations of colistin, more than 80% of the genes were upregulated, including genes associated with antioxidative stress response pathways. The results elucidate the morphological difference between the colistin-susceptible and -resistant isolates and different colistin-mediated responses in A. baumannii isolates depending on their susceptibility to this drug.