Project description:Purpose: Helminth infection and dietary intake can affect the intestinal microbiota, as well as the immune system. Methods: Here we analyzed the relationship between fecal microbiota and blood profiles of indigenous Malaysians, referred to locally as Orang Asli, in comparison to urban participants from the capital city of Malaysia, Kuala Lumpur. Results: We found that helminth infections had a larger effect on gut microbial composition than did dietary intake or blood profiles. Trichuris trichiura infection intensity also had the strongest association with blood transcriptional profiles. By characterizing paired longitudinal samples collected before and after deworming treatment, we determined that changes in serum zinc and iron levels among the Orang Asli were driven by changes in helminth infection status, independent of dietary metal intake. Serum zinc and iron levels were associated with changes in the abundance of several microbial taxa. Conclusions: There is considerable interplay between helminths, micronutrients and the microbiota on the regulation of immune responses in humans.
2019-10-01 | GSE137338 | GEO
Project description:Gut and oral microbiota of indigenous Orang Asli community
Project description:Background: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria.Results: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching.
Project description:<p>Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However the CNV data from diverse populations is rather limited. Here we report the first investigation of copy number variation (CNV) in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 62 putative novel CNVs, consisting of 25 gains and 37 losses. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), as well as the metabolic pathways (GO:0001852). Copy number gains in CNVRs enriched with genes were significantly higher than the losses (P value <0.001). Therefore, in view of the small population size, relative isolation and semi-normadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.</p>
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Two Acinetobacter baumannii strains with low susceptibility to fosmidomycin and two reference with high susceptibility to fosmidomycin were DNA-sequenced to investigate the genomic determinants of fosmidomycin resistance.