Project description:The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 250). Finally, we demonstrate the feasibility of pooled culture of genetically diverse PSCs as “cell villages”, which can facilitate the differentiation of large numbers for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.
2025-06-21 | GSE270007 | GEO
Project description:Diversity Outbred mice gut microbiome
Project description:We measured genome-wide chromatin accessibility of embryonic stem cells derived from Diversity Outbred mice. We cultured cells in media with LIF + GSK3-beta inhibitor CHIR99021.
Project description:Genetic variation, in addition to environmental influences like diet, can govern the expression levels of microRNAs (miRNAs). MiRNAs are commonly found to operate cooperatively in groups to regulate gene expression. To investigate this, we combined small RNA sequencing, clinical phenotypes, and microarray data measuring gene expression from an outbred mouse model, the Diversity Outbred population. In the DO population, each individual has a distinct genome that is a mosaic of 8 inbred founder strains. We used these data to identify co-regulated modules of miRNAs and genes that are influenced by genetics and diet, and identify relationships between the modules and phenotypes in over 200 DO mice.
2017-09-26 | GSE99560 | GEO
Project description:Microbiome composition of Diversity Outbred Mice
Project description:The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 250). Finally, we demonstrate the feasibility of pooled culture of genetically diverse PSCs as “cell villages”, which can facilitate the differentiation of large numbers for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.