Project description:Changes in gene expression form a crucial part of the plant response to pathogen infection. Whole-leaf expression profiling has played a valuable role in identifying genes and processes that contribute to the interactions between the model plant Arabidopsis thaliana and a diverse range of pathogens. However, for highly localised infections, such as downy mildew caused by the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis (Hpa), whole-leaf profiling may fail to capture the complete Arabidopsis response. Highly localised expression changes may be diluted by the comparative abundance of non-responding leaf cells or the Hpa oomycete evading detection by cells. Furthermore, local and systemic Hpa responses of a differing nature may become convoluted. To address this we applied the technique of Fluorescence Activated Cell Sorting (FACS), typically used for analyzing plant abiotic responses, to the study of plant-pathogen interactions. Using the promoter of Downy Mildew Resistant 6 (DMR6) linked to GFP as a fluorescent marker of pathogen-contacting cells, we isolated Hpa-proximal and Hpa-distal cells from infected leaf samples using FACS, and measured global gene expression.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.
Project description:The oomycete Phytophthora palmivora infects a wide range of tropical crops worldwide. Like other filamentous plant pathogens, it secretes effectors to colonise plant tissues. Here we characterise FIRE, an RXLR effector that contains a canonical mode I 14-3-3 phospho-sensor binding motif that is conserved in effectors of several Phytophthora species. FIRE is phosphorylated in planta and interacts with multiple 14-3-3 proteins. Binding is sensitive to the R18 14-3-3 inhibitor. FIRE promotes plant susceptibility and co-localises with its target around haustoria. This work uncovers a new type of oomycete effector target mechanism. It demonstrates that substrate mimicry for 14-3-3 proteins is a cross-kingdom effector strategy used by both prokaryotic and eukaryotic plant pathogens to suppress host immunity.
Project description:One fascinating aspect of plant pathogen co-evolution is that pathogens use effectors to alter a broad range of host responses. RNA splicing functions in many physiological processes including plant immunity. However, how plant pathogens manipulate host RNA splicing process remains unknown. Here we demonstrate that PsAvr3c, an avirulence effector from oomycete pathogen Phytophthora sojae, physically binds to and stabilizes soybean (Glycine max) serine/arginine/lysine rich proteins GmSRKPs in vivo. SRKP, novel proteins associating with spliceosome components, are plant susceptibility factors against Phytophthora. Furthermore, RNA-seq data uncovers that differential splicing over one thousand soybean mRNA transcripts, including defense related genes, are significantly changed in GmSRKP1 over-expressing lines. Representative splicing events are verified in either infection assay or soybean transient expression assay. Our results demonstrate that plant pathogen utilize effector to reprogram host RNA splicing, uncovering a new strategy evolved by pathogens to defeat host immune system
Project description:Disease outbreaks devastate Pyropia aquaculture farms every year. The three most common and serious diseases are Olpidiopsis blight and red-rot disease caused by oomycete pathogens and green-spot disease caused by PyroV1 virus. We hypothesized that a basic genetic profile of molecular defenses will be revealed by comparing and analyzing genetic response of Pyropia tenera against the above three pathogens. RNAs isolated from infected thalli were hybridized onto an oligochip containing 15,115 primers designed from P. tenera ESTs. Microarray profiles of the three diseases were compared and interpreted together with histochemical observation. Massive amounts of reactive oxygen species (ROS) were accumulated in P. tenera cells exposed to oomycete pathogens. Heat shock genes and serine proteases were the most highly upregulated genes in all infection experiments. Genes involved in RNA metabolism, ribosomal proteins and antioxidant metabolism were also highly upregulated. Genetic profiles of P. tenera in response to pathogens were most similar between the two biotrophic pathogens, Olpidiopsis pyropiae and PyroV1 virus. A group of plant R-gene homologues were specifically regulated against each pathogen. Our results suggested that disease resistance of P. tenera consist of a general and constitutive defense and a genetic toolkit against specific pathogen.
Project description:Phytophthora cinnamomi is a devastating soil-borne oomycete with a very broad host range however there remains a major gap in the understanding of plant resistance responses to the pathogen, furthermore, necrotrophic plant-pathogen interactions, particularly those of root pathogens, remain poorly understood. Zea mays exhibits non-host resistance to the pathogen and has been well characterised as a model species. Using the maize Affymetrix GeneChip array we conducted genome-wide gene expression profiling to elucidate the defence genes and pathways which are induced in the root tissue of a resistant plant species to the pathogen.
Project description:Biological control is a promising approach to control diseases caused by Pythium species. Unusually for a single genus, the Pythium genus also includes species that can antagonise Pythium plant pathogens, such as Pythium oligandrum. These Pythium plant pathogens are commonly found in the soil such as the broad host-range pathogen Pythium myriotylum and cause various diseases of important crops. While P. oligandrum genes expressed in the interaction with oomycete plant pathogens have been identified previously, the transcriptional response of an oomycete plant pathogen to P. oligandrum has not been investigated. An isolate of P. oligandrum, GAQ1, recovered from soil could antagonise P. myriotylum in a plate-based confrontation assay. The P. oligandrum isolate had a strong disease control effect on soft-rot of ginger caused by P. myriotylum. We investigated the transcriptional interaction between P. myriotylum and P. oligandrum. As part of the transcriptional response of P. myriotylum to the presence of P. oligandrum, putative effector genes such as a sub-set of Kazal-type protease inhibitors were strongly upregulated. P. myriotylum cellulases and elicitin-like putative effectors were also upregulated. In P. oligandrum, cellulases, peroxidases, proteases and NLP effectors were upregulated. The transcriptional response of P. myriotylum suggests clear features of a counter-attacking strategy that may contribute to the variable success and durability of biological attempts to control diseases caused by Pythium species. Whether aspects of this counter-attack could inhibit aspects of this virulence of P. myriotylum is another interesting aspect for future studies.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.