Project description:We performed RNAseq on total RNA extracted from spleens isolated from mice infected with Orientia tsutsugamushi Karp or Gilliam strains, as well as mock-infected mice to investigate the unique transcriptomic environments elicited by two different Orientia tsutsugamushi strains.
Project description:We performed RNAseq on total RNA extracted from brains of mice infected with Orientia tsutsugamushi to investigate the transcriptomic signature of this tissue throughout infection.
Project description:We performed NanoString analysis on total RNA extracted from spleens of mice infected with Orientia tsutsugamushi to investigate the transcriptomic signature of these cells throughout infection.
Project description:We performed RNAseq on total RNA extracted from splenic B cells isolated from mice infected with Orientia tsutsugamushi to investigate the dynamic transcriptomic signature of these cells throughout infection. We then performed differential expression analysis, meta-analysis, and gene set enrichment anaylsis using data obtained by RNA-seq of mock infected (D0) and O. tsutsugamushi-infected mice (D4 and D8).
Project description:The intracellular bacterium Orientia tsutsugamushi relies on the microtubule cytoskeleton and the motor protein dynein to traffic to the perinuclear region within infected cells. However, it remains unclear how the bacterium is coupled to the dynein machinery and how transport is regulated. Here, we discover that O. tsutsugamushi uses its autotransporter protein ScaC to recruit the dynein adaptors BICD1 and BICD2 for movement to the perinucleus. We show that ScaC is sufficient to engage dynein-based motility in the absence of other bacterial proteins and that BICD1 and BICD2 are required for efficient movement of O. tsutsugamushi during infection. Using TIRF single-molecule assays, we demonstrate that ScaC induces BICD2 to adopt an open conformation which activates the assembly of dynein-dynactin complexes. Our results reveal a role for BICD adaptors during bacterial infection and provide mechanistic insights into the life cycle of an important human pathogen.