Project description:‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid (ACP). Percoll gradient density centrifugation was used to fractionate an ACP homogenate to generate a sample enriched for intact microbial cells (CLas and insect endosymbionts) and associated ACP cells. Proteins were extracted from Percoll gradient fractions prepared in triplicate from CLas(-) ACP samples and CLas(+) ACP samples.
2018-10-25 | PXD003097 | Pride
Project description:Genome sequencing of endosymbionts from the psyllid Cacopsylla melanoneura
| PRJNA803426 | ENA
Project description:Genome sequencing of endosymbionts from the psyllid Cacopsylla picta
| PRJNA853274 | ENA
Project description:Genome sequencing of endosymbionts from the psyllid Cacopsylla pyricola
| PRJNA853282 | ENA
Project description:Genome sequencing of endosymbionts from the psyllid Cacopsylla pyri
Project description:BACKGROUND: The tomato psyllid, Bactericera cockerelli Šulc (Hemiptera: Triozidae), is a pest of solanaceous crops such as tomato (Solanum lycopersicum L.) in the U.S. and vectors the disease-causing pathogen ‘Candidatus Liberibacter solanacearum’. Currently, the only effective strategies for controlling the diseases associated with this pathogen involve regular pesticide applications to manage psyllid population density. However, such practices are unsustainable and will eventually lead to widespread pesticide resistance in psyllids. Therefore, new control strategies must be developed to increase host-plant resistance to insect vectors. For example, expression of constitutive and inducible plant defenses can be improved through selection. Currently, it is still unknown whether psyllid infestation has any lasting consequences on tomato plant defense or tomato plant gene expression in general. RESULTS: To characterize the genes putatively involved in tomato defense against psyllid infestation, RNA was extracted from psyllid-infested and uninfested tomato leaves (Moneymaker) three weeks post-infestation. Transcriptome analysis identified 362 differentially expressed genes. These differentially expressed genes were primarily associated with defense responses to abiotic/biotic stress, transcription/translation, cellular signaling/transport, and photosynthesis. These gene expression changes suggested that tomato plants underwent a reduction in plant growth/health in exchange for improved defense against stress that was observable three weeks after psyllid infestation. Consistent with these observations, tomato plant growth experiments determined that the plants were shorter three weeks after psyllid infestation. Furthermore, psyllid nymphs had lower survival rates on tomato plants that had been previously psyllid infested. CONCLUSION: These results suggested that psyllid infestation has lasting consequences for tomato gene expression, defense, and growth.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi. 6 different conditions were analyzed, each consisting of two biological replicates. These included Rhizopus microsporus ATCC52813 (sex +) growing alone with endosymbionts, R. microsporus ATCC52814 (sex -) growing alone with endosymbionts, ATCC 52813 growing alone without endosymbionts, ATCC52814 growing alone without endosymbionts, ATCC52813 and ATCC52814 growing together with endosymbionts (successfully mating), and ATCC52813 and ATCC52814 growing together without endosymbionts (failure to mate). In each condition, fungi were cultivated on half-strength PDA and plugs of mycelium were placed at the edge of the plate. After 6 days, approximately 2.5 cm of tissue were harvested from the center of the plate. Each biological replicate consists of 5 plates which were pooled prior to RNA extraction to ensure sufficient tissue was collected.
Project description:Through transcriptome profiling using RNA-seq, we investigated the mechanisms behind bacterial endosymbiont (Burkholderia rhizoxinica) control over host (Rhizopus microsporus) reproductive biology. By analyzing differential expression across six different conditions, including fungal opposite mates growing independently with or without endosymbionts, as well as opposite mates growing together with endosymbionts (mating) or without endosymbionts (no mating), we were able to identify that endosymbionts control expression of a Ras signaling protein critical for sexual reproduction in many fungi (Ras2). As little is known regarding sexual reproduction in Mucoromycotina, we also used these data to investigate conservation of sex-related genes across all fungi, as well as predict potential genes involved in sensing of trisporic acid, the mating pheromone used by these fungi.
Project description:We seqeunced mRNA from the bacterial pathogen 'Candidatus Liberibacter solanacearum" during its association with the psyllid vector Bactericera cockerelli. Total RNA was purified from psyllids, insect and bacterial rRNAs were depleted. PolyA RNA was purified using Dynabeads. PolyA purified RNA and depleted RNA were sequenced.