ABSTRACT: Multi-technique characterization of iron reduction by an Antarctic Shewanella: an analog system for putative Martian biosignature identification
Project description:Time-series transcriptional profiles of Shewanella oneidensis type strain MR-1 under iron depletion and repletion conditions. Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, temporal gene expression profiles were examined for iron depletion and repletion to delineate the iron response of S. oneidensis and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. In conclusion, we identified major biological pathways that were differentially expressed during iron depletion and repletion.
Project description:Time-series transcriptional profiles of Shewanella oneidensis type strain MR-1 under iron depletion and repletion conditions. Iron homeostasis of Shewanella oneidensis, a gamma-proteobacterium possessing high iron content, is regulated by a global transcription factor Fur. However, knowledge is incomplete about other biological pathways that respond to changes in iron concentration, as well as details of the responses. In this work, temporal gene expression profiles were examined for iron depletion and repletion to delineate the iron response of S. oneidensis and a gene co-expression network was reconstructed. Modules of iron acquisition systems, anaerobic energy metabolism and protein degradation were the most noteworthy in the gene network. Bioinformatics analyses suggested that genes in each of the modules might be regulated by DNA-binding proteins Fur, CRP and RpoH, respectively. Closer inspection of these modules revealed a transcriptional regulator (SO2426) involved in iron acquisition and ten transcriptional factors involved in anaerobic energy metabolism. Selected genes in the network were analyzed by genetic studies. Disruption of genes encoding a putative alcaligin biosynthesis protein (SO3032) and a gene previously implicated in protein degradation (SO2017) led to severe growth deficiency under iron depletion conditions. Disruption of a novel transcriptional factor (SO1415) caused deficiency in both anaerobic iron reduction and growth with thiosulfate or TMAO as an electronic acceptor, suggesting that SO1415 is required for specific branches of anaerobic energy metabolism pathways. In conclusion, we identified major biological pathways that were differentially expressed during iron depletion and repletion. Four biological replicates of S. oneidensis MR-1 cells were grown to the midlog phase (OD600 = 0.6). Samples were collected at time 0, and then at 1, 5, 10, 20, 40, and 60 min after adding 2,2'-dipyridyl to attain a final concentration of 160 uM. Thereafter, ferrous sulfate was added to final concentration of 200 uM, and cells were collected at 1, 5, 10, 20, 40, and 60 min.
Project description:Here, we established a successive Fe0-enhanced microbe system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) in whole genome transcriptional level. Comparing with the treatment without ZVI, approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced microbial azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that induced [Ni-Fe] H2ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced azo reduction in S. decolorationis S12 and lays a foundation for further optimization of integrated ZVI-microbial system for efficient organic pollution treatment.
Project description:Initial attachment to a surface marks the onset of a bacterial life style switch from planktonic to biofilm mode of growth. Among dissimilatory iron reducing bacteria, S. oneidensis MR-1 is notable due to its extensive respiratory versatility. It has been hypothesized that direct interaction of Shewanella cells with, or close proximity to, an appropriate surface facilitates the deposition of electrons. In fact, Shewanella species have been demonstrated to adhere to various surfaces and form biofilms. Global transcriptome profiling was performed on cells in the transition to surface-associated growth using different surfaces and conditions to understand molecular mechanisms underlying the initiation of microbe-surface interactions and the switch from planktonic to sessile life style. In the study presented, expression profiles of two independent replicates of Shewanella oneidensis MR-1 wild type cells attached to glass for 0.25 h and 1 h, respectively, under hydrodynamic conditions were compared to two independent replicates of planktonic grown Shewanella oneidensis MR-1 wild type cells. Furthermore, expression profiles of two independent replicates of Shewanella oneidensis MR-1 wild type cells attached for 1 h to iron surface under hydrodynamic conditions were compared to two independent replicates of Shewanella oneidensis MR-1 wild type cells attached to glass for 1 h. All samples were obtained from aerobically grown cells in LM.
Project description:Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon Pyrodictium delaneyi Su06T. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50-100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron grown cells. There were no changes in the abundances of flagellin proteins nor a putative nitrate reductase, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals.