Project description:Background and Aims: Magnesium (Mg) fertilizer has been proved to play an important role in improving the yield and quality of tea. However, plant availability of Mg, including its use, efficiency, and quality improvement effects, were highly affected by plant species, soil characteristics (nutritional status, etc.), and Mg status (chemical-available, etc.). Methods: Tea plants were pot-cultivated in 12 typical tea plantation soils amended with and without Mg fertilizer. Exchangeable Mg (Ex-Mg) concentration in soils was quantitatively extracted using four extraction solutions (Mehlich-3, BaCl2, CaCl2, and NH4OAC). Plant availability of Mg was evaluated by Mg uptake and its use efficiency, as well as its association with quality components in tea plants. Results: Ex-Mg in soils was extracted most efficiently by Mehlich-3, while Mg concentrations in tea plant tissue were higher correlated with Ex-Mg extracted by CaCl2 than other extraction solutions. Mg fertilizer use efficiency in tea plant varied from 6.08 to 29.56 %, and the effect of Mg application on tea quality improvement and the use efficiency of Mg fertilizer both negatively correlated with total Mg concentration (r = -0.94 and -0.63, respectively) and nitrogen (N) level (r = -0.61 and -0.51, respectively) in soils prior to tea plant cultivation. Conclusions: CaCl2 could be recommended for plant-available Mg extraction in tea plantation soil, and Mg fertilizer use efficiency could be affected and predicted by total N and Mg status in soils prior to tea plant cultivation, providing a potential theoretical for the guidance of Mg fertilization for tea yield and quality improvement in tea plantation management.
Project description:The rapid expansion of fast-growing plantations in subtropical regions is closely linked to dry-season irrigation and fertilization; however, improper practices often lead to soil acidification and reduced nutrient bioavailability. Phosphorus (P), one of the most critical elements for plantation tree growth, shows complex spatial distribution patterns in soil that are influenced by multiple factors, directly affecting plantation productivity. This study investigated the effects of long-term fertilization and dry-season irrigation on the vertical distribution of phosphorus in an 8-year-old subtropical Eucalyptus plantation. This study employed stratified sampling (0–30 cm topsoil, 30–60 cm subsoil, 60–90 cm substratum) during dry seasons, coupled with metagenomics, metabolomics, and environmental factor analysis, to reveal vertical phosphorus cycling patterns and multiomics regulatory networks. Key findings: (1) Fertilization and dry-season irrigation had a limited influence on labile phosphorus and the diversity of P-cycling microorganisms. The topsoil presented significantly greater P availability than did the subsoil, manifested as elevated acid phosphatase activity (ACP), significant enrichment of the tryptophan metabolic pathway, and greater microbial diversity. (2) pH and the C:P ratio represent critical factors of vertical stratification in soil P cycling. Under acidic conditions, topsoil microorganisms facilitate P release via diverse metabolic pathways, whereas oligotrophic constraints in the substratum limit enzymatic activities. (3) We believe that potential cross-stratum microbial functional coordination exists in acidic soil P cycling, with linkages to tryptophan metabolism and polyP synthesis/degradation. Our study provides theoretical multiomics insights for optimizing the management of soil P pools in subtropical plantations under fertilization and dry-season irrigation.
Project description:The systematic deep sequencing analysis provided a comprehensive understanding of the transcriptome complexity of 2n and 3n Fujian oyster. This information broadens our understanding of the mechanisms of C.angulata polyploidization and contributes to molecular and genetic research by enriching the oyster database. This is the first report on genome-wide transcriptional analysis of adductor muscle of diploid and triploid Fujian oyster and has demonstrated triploid oysters are morphologically almost identical to their diploid counterparts, but have faster growth, due to the reorientation of energetic allocation from gametogenesis to somatic investment. This study provides a foundation for further analysis of the gene expression patterns and signaling pathways which regulate the molecular mechanisms of diploid and triploid oyster.
Project description:Parkinson’s Disease (PD) is a disease of the central nervous system that progressively affects the motor system. Epidemiological studies have provided evidence that exposure to agriculture-related occupations or agrichemicals elevate a person’s risk for PD. Here, we sought to examine the possible epigenetic changes associated with working on a plantation on Oahu, HI and/or exposure to organochlorines (OGC) in PD cases. We measured genome-wide DNA methylation using the Illumina Infinium HumanMethylation450K BeadChip array in matched peripheral blood and postmortem brain biospecimens in PD cases (n=20) assessed for years of plantation work and presence of organochlorines in brain tissue. The comparison of 10+ to 0 years of plantation work exposure detected 7 and 123 differentially methylated loci (DML) in brain and blood DNA, respectively (P<0.0001). The comparison of cases with 4+ to 0-2 detectable levels of OGC, identified 8 and 18 DML in brain and blood DNA, respectively (P <0.0001). Pathway analyses revealed links to key neurotoxic and neuropathologic pathways related to impaired immune and proinflammatory responses as well as impaired clearance of damaged proteins, as found in the predominantly glial cell population in these environmental exposure-related PD cases.