Project description:Macrocyclic peptides are attractive for chemoproteomic applications due to their modular synthesis and potential for high target selectivity. We describe a solid phase synthesis method for the efficient generation of libraries of small macrocycles that contain an electrophile and alkyne handle. The modular synthesis produces libraries that can be directly screened using simple SDS-PAGE readouts and then optimal lead molecules applied to proteomic analysis. We generated a library of 480 macrocyclic peptides containing the weakly reactive fluorosulfate (OSF) electrophile. Initial screening of a subset of the library containing each of the various diversity elements identified initial molecules of interest. The corresponding positional and confirmational isomers were then screened to select molecules that showed specific protein labeling patterns that were dependent on the probe structure. The most promising hits were applied to standard chemoproteomic workflows to identify protein targets. Our results demonstrate the feasibility of rapid, on-resin synthesis of diverse macrocyclic electrophiles to generate new classes of covalent ligands.
Project description:LNPs have been demonstrated to hold great promise for the clinical advancement of RNA therapeutics. Continued exploration of LNPs for application in new disease areas requires identification and optimisation of leads in a high throughput way. Currently available high throughput in vivo screening platforms are well suited to screen for cellular uptake but less so for functional cargo delivery. We report on a platform which measures functional delivery of LNPs using unique peptide ‘barcodes’. We describe the design and selection of the peptide barcodes and the evaluation of these for the screening of LNPs. We show that proteomic analysis of peptide barcodes correlates with quantification and efficacy of barcoded reporter proteins both in vitro and in vivo and, that the ranking of selected LNPs using peptide barcodes in a pool correlates with ranking using alternative methods in groups of animals treated with individual LNPs. We show that this system is sensitive, selective, and capable of reducing the size of an in vivo study by screening up to 10 unique formulations in a single pool, thus accelerating the discovery of new technologies for mRNA delivery.
Project description:Display technologies, e.g., phage, ribosome, mRNA, bacterial, and yeast-display, combine high content peptide libraries with appropriate screening strategies to identify functional peptide sequences. Construction of large peptide library and display-screen system in intact mammalian cells will facilitate the development of peptide therapeutics targeting transmembrane proteins. Our previous work established linear-double-stranded DNAs (ldsDNAs) as innovative biological parts to implement AND gate genetic circuits in mammalian cell line. In the current study, we employ ldsDNA with terminal NNK degenerate codons as AND gate input to build highly diverse peptide library in mammalian cells. Only PCR reaction and cell transfection experiments are needed to construct the library. High-throughput sequencing (HTS) results reveal that our new strategy could generate peptide library with both amino acid sequence and peptide length diversities. Our work establishes ldsDNA as biological parts for building highly diverse peptide library in mammalian cells, which shows great application potential in developing therapeutic peptides targeting transmembrane proteins.
Project description:A strategy for the high-throughput screening of a peptide nucleic acid (PNA) encoded peptide library to allow the identification of MRSA and MSSA selective peptides including AMPs. This novel screening approach allows simultaneous screening of cell selective peptides with different uptake mechanisms including lytic peptides and non-lytic CPPs. MRSA and MSSA were incubated with Library-18 (50 uM; corresponding to 39 nM of each library member) under short incubation times (30 min) to ensure collection of both live and apoptotic cells, which allowed selection of lytic peptides as well as non-lytic CPPs. Incubation was followed by washing and lysis and the intracellular and membrane associated library members were extracted and purified by filter centrifugation (between 3,000 and 10,000 Da). The extracted PNA tags were hybridized onto custom designed microarrays. Each microarray consisted of 4 sub-arrays of 44,000 features each with 33 replicates of each oligonucleotide complementary to each member of the library as well as 1232 non-coding negative controls. Microarray scanning and data analysis (BlueFuse, BlueGenome) was used to extract the intensity of the FAM label, thereby giving the relative amount of PNA hybridized to each spot and the identity of the peptide.
Project description:We present a method that employs two genetically encoded substrate phage display libraries coupled with next generation sequencing (SPD-NGS) that allows up to 10,000-fold deeper sequence coverage of the typical 6 to 8 residue protease cleavage sites compared to state-of-the-art synthetic peptide libraries or proteomics. We applied SPD-NGS to two classes of proteases, the intracellular caspases 2, 3, 6, 7 and 8, and the ectodomains of the membrane sheddases, ADAMs 10 and 17. The first library (Lib 10AA) was used to determine substrate cleavage motifs. Lib 10AA contains a highly diverse randomized 10-mer substrate peptide sequences (10^9 unique members) that was displayed mono-valently on filamentous phage and bound to magnetic beads via an N-terminal biotin. The protease was allowed to cleave the SPD beads, and the released phage subjected to up to three total rounds of positive selection followed by next generation sequencing (NGS). This allowed us to identify from 10^4 to 10^5 unique cleavage sites over a broad dynamic range of NGS counts (ranging from 3-5000), and produced consensus and optimal cleavage motifs based positional sequencing scoring matrices and state-of the-art machine learning algorithm that closely matched synthetic peptide data. A second SPD-NGS library (Lib hP) was constructed that allowed us to identify candidate human proteome sequences. Lib hP displayed virtually the entire human proteome tiled in contiguous 49AA sequences with 25AA overlaps (nearly 1 million members). After three rounds of positive selection we identified up to 10^4 natural linear cut sites depending on the protease and captured most of the examples previously identified by proteomics (ranging from 30 to 1000) and predicted 10 to 100-fold more.
Project description:IgNAR exhibits significant promise in the fields of cancer and anti-virus biotherapies. Notably, the variable regions of IgNAR (VNAR) possess comparable antigen binding affinity with much smaller molecular weight (~12 kDa) compared to IgNAR. Antigen specific VNAR screening is a changeling work, which limits its application in medicine and therapy fields. Though phage display is a powerful tool for VNAR screening, it has a lot of drawbacks, such as small library coverage, low expression levels, unstable target protein, complicating and time-consuming procedures. Here we report VNAR screening with next generation sequencing (NGS) could effectively overcome the limitations of phage display, and we successfully identified approximately 3000 BAFF-specific VNARs in Chiloscyllium plagiosum vaccinated with the BAFF antigen. The results of modelling and molecular dynamics simulation and ELISA assay demonstrated that one out of the top five abundant specific VNARs exhibited higher binding affinity to the BAFF antigen than those obtained through phage display screening. Our data indicates NGS would be an alternative way for VNAR screening with plenty of advantages.