Project description:Oral facial cleft (OFC) is a multifactorial disorder that can present as a cleft lip with or without cleft palate (CL/P) or a cleft palate only. Genome wide association studies (GWAS) of isolated OFC have identified common single nucleotide polymorphisms (SNPs) at the 1q32/IRF6 locus and many other loci where, like IRF6, the gene presumed to be relevant to OFC risk is expressed in embryonic oral epithelium. To identify the functional subset of SNPs at eight such loci we conducted a massively parallel reporter assay in a cell line derived from fetal oral epithelium, revealing SNPs with allele-specific effects on enhancer activity.
Project description:Oral facial cleft (OFC) is a multifactorial disorder that can present as a cleft lip with or without cleft palate (CL/P) or a cleft palate only. Genome wide association studies (GWAS) of isolated OFC have identified common single nucleotide polymorphisms (SNPs) at the 1q32/IRF6 locus and many other loci where, like IRF6, the gene presumed to be relevant to OFC risk is expressed in embryonic oral epithelium. To identify the functional subset of SNPs at eight such loci we conducted a massively parallel reporter assay in a cell line derived from fetal oral epithelium, revealing SNPs with allele-specific effects on enhancer activity.
Project description:Orofacial clefts are the most common form of congenital craniofacial malformations worldwide. The etiology of these birth defects is multifactorial, involving genetic and environmental factors. In most cases, however, the underlying causes remain unexplained, precluding molecular understanding of disease mechanisms. Here, we integrated genome-wide association data, targeted re-sequencing of case and control cohorts, cell type-specific epigenomic profiling, and genome architecture analyses, to functionally and molecularly dissect a genomic locus associated with an increased risk of non-syndromic orofacial cleft. We found that common and rare risk variants associated with orofacial cleft intersect with a conserved enhancer (e2p24.2) that becomes activated in cranial neural crest cells—the embryonic cell type responsible for sculpting the craniofacial complex. We mapped e2p24.2 long-range interactions to a topologically associated domain harboring MYCN and DDX1 and demonstrated that both MYCN and DDX1 are required for craniofacial development in chicken embryos. Molecularly, we found that e2p24.2 regulates the expression of MYCN, but not DDX1, in cranial neural crest cells. In turn, DDX1 is a target of the MYC family of transcription factors and a component of the tRNA splicing complex. The loss of DDX1 in cranial neural crest cells resulted in the accumulation of unspliced tRNA fragments, and impaired both global protein synthesis and cranial neural crest cell migration. We further showed that the induction of tRNA fragments is sufficient to disrupt craniofacial development. Together, these results uncovered a molecular mechanism in which impaired tRNA splicing, and the concomitant accumulation of tRNA fragments, affect neural crest and craniofacial development and positioned MYCN, DDX1, and tRNA processing defects as risk factors in the pathogenesis of orofacial clefts.
Project description:Orofacial clefts are the most common form of congenital craniofacial malformations worldwide. The etiology of these birth defects is multifactorial, involving genetic and environmental factors. In most cases, however, the underlying causes remain unexplained, precluding molecular understanding of disease mechanisms. Here, we integrated genome-wide association data, targeted re-sequencing of case and control cohorts, cell type-specific epigenomic profiling, and genome architecture analyses, to functionally and molecularly dissect a genomic locus associated with an increased risk of non-syndromic orofacial cleft. We found that common and rare risk variants associated with orofacial cleft intersect with a conserved enhancer (e2p24.2) that becomes activated in cranial neural crest cells—the embryonic cell type responsible for sculpting the craniofacial complex. We mapped e2p24.2 long-range interactions to a topologically associated domain harboring MYCN and DDX1 and demonstrated that both MYCN and DDX1 are required for craniofacial development in chicken embryos. Molecularly, we found that e2p24.2 regulates the expression of MYCN, but not DDX1, in cranial neural crest cells. In turn, DDX1 is a target of the MYC family of transcription factors and a component of the tRNA splicing complex. The loss of DDX1 in cranial neural crest cells resulted in the accumulation of unspliced tRNA fragments, and impaired both global protein synthesis and cranial neural crest cell migration. We further showed that the induction of tRNA fragments is sufficient to disrupt craniofacial development. Together, these results uncovered a molecular mechanism in which impaired tRNA splicing, and the concomitant accumulation of tRNA fragments, affect neural crest and craniofacial development and positioned MYCN, DDX1, and tRNA processing defects as risk factors in the pathogenesis of orofacial clefts.
Project description:Orofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24 and 17% for the first and second component respectively. In OFC cells, 228 genes were differentially expressed (p<0.001). Gene ontology analysis showed enrichment of genes involved in β1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 μm) vs. non-OFC keratinocytes (503.4 ± 41.81 μm, p<0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.
Project description:Orofacial clefts are the most common form of congenital craniofacial malformations worldwide. The etiology of these birth defects is multifactorial, involving genetic and environmental factors. In most cases, however, the underlying causes remain unexplained, precluding molecular understanding of disease mechanisms. Here, we integrated genome-wide association data, targeted re-sequencing of case and control cohorts, cell type-specific epigenomic profiling, and genome architecture analyses, to functionally and molecularly dissect a genomic locus associated with an increased risk of non-syndromic orofacial cleft. We found that common and rare risk variants associated with orofacial cleft intersect with a conserved enhancer (e2p24.2) that becomes activated in cranial neural crest cells—the embryonic cell type responsible for sculpting the craniofacial complex. We mapped e2p24.2 long-range interactions to a topologically associated domain harboring MYCN and DDX1 and demonstrated that both MYCN and DDX1 are required for craniofacial development in chicken embryos. We found that e2p24.2 regulates the expression of MYCN, but not DDX1, in cranial neural crest cells. In turn, DDX1 is a target of the MYC family of transcription factors and a component of the tRNA splicing complex. The loss of DDX1 in cranial neural crest cells resulted in the accumulation of unspliced tRNA fragments, depletion of the mature pool of intron-containing tRNAs, and ribosome stalling at codons decoded by these tRNAs. These effects were accompanied by defects in both global protein synthesis and cranial neural crest cell migration. We further showed that the induction of tRNA fragments is sufficient to disrupt craniofacial development. Together, these results uncovered a molecular mechanism in which impaired tRNA splicing affects neural crest and craniofacial development and positioned MYCN, DDX1, and tRNA processing defects as risk factors in the pathogenesis of orofacial clefts.
Project description:Orofacial clefts are one of the most common birth defects, affecting 1-2 per 1000 births, and have a complex etiology. High-resolution array-based comparative genomic hybridization has increased the ability to detect copy number variants that can be causative for complex diseases such as cleft lip and/or palate. Utilizing this technique on 97 non-syndromic cleft lip and palate cases and 43 cases with cleft palate only, we identified a heterozygous deletion of Isthmin 1 in one affected case, as well as a deletion in a second case which removes putative 3' regulatory information. Isthmin 1 is a strong candidate for clefting as it is expressed in orofacial structures derived from the first branchial arch and is also in the same synexpression group as fibroblast growth factor 8 and sprouty RTK signaling antagonist 1a and 2, all of which have been associated with clefting. Copy number variants affecting Isthmin 1 are exceedingly rare in control populations, and Isthmin 1 scores as a likely haploinsufficiency locus. Confirming its role in craniofacial development, knockdown or CRISPR/Cas9-generated mutation of isthmin 1 in Xenopus laevis resulted in mild to severe craniofacial dysmorphologies, with several individuals presenting with median clefts. Moreover, knockdown of isthmin 1 produced decreased expression of LIM homeobox 8, itself a gene associated with clefting, in regions of the face that pattern the maxilla. Our study demonstrates a successful pipeline from copy number variant identification of a candidate gene to functional validation in a vertebrate model system and reveals Isthmin 1 as both a new human clefting locus as well as a key craniofacial patterning gene.