Project description:POMD (pyrite and organic matter based mixotrophic denitrification)system for secondary effluent treatment
| PRJNA479586 | ENA
Project description:Performance and mechanisms of synchronous nitrate and phosphorus removal in constructed pyrite-based mixotrophic denitrification (POMD) process from secondary effluent
Project description:Despite recent knowledge of the potential environmental impact that compounds present in municipal wastewater effluents, including contaminants of emerging concern (CECs), may have, the implications of fish exposure to this contaminant mixtures are not completely understood. The effects caused by effluent CECs may be subtle and diverse, thus the need for sensitive and comprehensive tools such as gene expression to detect such responses. In this study, we conducted laboratory exposures that examined plasma concentrations of vitellogenin (VTG), changes in secondary sexual characteristics and gene expression in sexually mature male fathead minnows (Pimephales promelas) exposed to environmentally realistic (0.5%) and higher (5%) concentrations of municipal wastewater effluents. Secondary and primary treated effluents were used. Several of the 32 CECs investigated were detected, including pharmaceuticals, personal care products, hormones, current use pesticides and industrial compounds. The percent of males with detectable levels of VTG was higher in fish exposed to effluent treatments. An increased number of males with changes in secondary sexual characteristics (e.g. development of ovipositors), was observed in fish exposed to 5% effluent treatments. Gene expression data indicated that overall expression patterns were characteristic to each effluent. Higher numbers of differentially expressed genes were observed in fish exposed to primary treated effluent when compared to controls. Differentially expressed genes belonged to several functional categories, including xenobiotic metabolism, estogenicity and energy/metabolism processes. Gene expression data provided information to understand some of the mechanisms behind the effects observed at higher biological levels. To investigate gene expression responses resulting from exposure to POTW effluents, two laboratory experiments were conducted using effluent from San Diego (Point Loma; SD) and Los Angeles (Hyperion; LA). The LA effluent received secondary treatment and the SD effluent received advanced primary treatment. Treatments used during exposures consisted of negative controls (moderately hard water), positive controls (E2), and 0.5% and 5% effluent concentrations. The 0.5% concentration of effluent represented an environmentally realistic exposure level. The 5% effluent concentration represented a higher level at which we expected biological responses. The exposures lasted 14 days. Treatments: EFFHa = 5% primary treated effluent EFFHb = 5% secondary treated effluent EFFLa = 0.5% primary treated effluent E2a = Estradiol, positive control for primary effluent E2b = Estradiol, positive control for secondary effluent CTRLa = Moderately hard water, negative control for primary effluent CTRLb = Moderately hard water, negative control for secondary effluent
Project description:Understanding the interactions of nanostructures with biological systems is essential to nanotoxicological research. Using a microarray-based toxicogenomics approach at early stage, this study investigated the relationship between particle size and toxicity of silica particles (SP) with diameters of 30, 70, and 300 nm (SP30, SP70, and SP300) as well as the mechanism of injury in mice. Two experiments with SiO2 particles of different sizes were considered in mice. One was aimed to investigate the dose-response relationship of SP70 toxicity at a dose of 10, 20, or 40 mg/kg (experiment 1), and the other set to study the size-response relationship of SP-induced toxicity using SP30, SP70, or SP300 (experiment 2). In experiment 2, two dosages each of SP30, SP70, and SP300 were performed. One was 10 mg/kg at three particle sizes, and the other was toxic doses of the three particle sizes, i.e., 10 mg/kg for SP30, 40 mg/kg for SP70, and 200 mg/kg for SP300. The toxic doses of the three particle sizes of SP were decided on the basis of the results of histopathological examinations and serum biochemical analysis in our previous study.n = 5
Project description:Contaminants of emerging concern (CECs) in treated municipal effluents have the potential to adversely impact exposed organisms prompting elevated public concern. Using transcriptomic tools, we investigated changes in gene expression and cellular pathways in the liver of male fathead minnows (Pimephales promelas) exposed to 5% concentrations of full secondary-treated (HTP) or advanced primary-treated (PL) municipal wastewater effluents containing CECs. Gene expression changes were associated with apical endpoints (plasma vitellogenin and changes in secondary sexual characteristics). Of 32 effluent CECs analyzed, 28 were detected including pharmaceuticals, personal care products, hormones, and industrial compounds. Transcript patterns differed between effluents, however < 10% of these had agreement in the detected response (e.g. transcrips involved in xenobiotic detoxification, oxidative stress and apoptosis) in both effluents. Exposure to PL effluent caused changes in transcript levels of genes involved in metabolic pathways (e.g., lipid transport and steroid metabolism). Exposure to HTP effluent affected transcripts involved in signaling pathways (e.g., focal adhesion assembly and extracellular matrix). Exposure to both effluents produced significantly higher levels of plasma VTG and changes in secondary sexual characteristics (e.g., ovipositor development). Taken together the results suggest, a potential association between some transcriptomic changes and higher biological responses following effluent exposure; and a potential adverse outcome pathway following exposure to complex chemical mixtures containing CECs -. Furthermore, this study identified responses in key genes and pathways not previously implicated in exposure to CECS, , which could be consistent with effluent exposure (e.g., oxidative stress) in addition to other pathway responses specific to the effluent type. This may be useful for assessing the adverse health effects of fish by effluents exposure to CECs.