Project description:Purpose: transcriptome sequencing of Conopomorpha sinensis Methods: high-through Illumina HiSeqTM 2000 Results:66017 transcripts,35383 unigenes Conclusions:This study provided valuable transcriptome data for the litchi fruit borer, which was the first fundamental genomic basis for exploiting gene resources from the litchi fruit borer
Project description:Background: Liver cancer is the third deadliest type of cancer, posing a serious threat to human health. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. C. sinensis, classified as a definite group I carcinogen by the IARC (International Agency for Research on Cancer), is an important risk factor for HCC. Although many studies have shown that C. sinensis infection affects the prognosis of HCC patients, the specific mechanisms are still unclear, especially the dynamics and regulatory roles of chromatin accessibility. Results: In this study, we integrated ATAC-seq, RNA-seq, and ChIP-seq data to elucidate changes in the epigenetics of HCC after the C. sinensis infection. Many different accessibility regions (DARs) were identified both in tumors and adjacent tissue after the C. sinensis infection. Meanwhile, top TFs whose motifs were enriched in DAR were found, such as HNF4a, FOXI1, etc. Although there were slight deviations, epigenetic changes were found to be consistent with gene expression levels. We also revealed that H3K9ac, H3K4me2, H3K4me3, H3K27ac, and H3K4me1 were associated with chromatin accessibility. Importantly, we also found potential evidence that C. sinensis infection would alter the spatial structure of the HCC genome. Finally, both molecular experimental results and clinical data certified that C. sinensis infection would promote the metastasis of HCC. Conclusions: C. sinensis infection will remodel the chromatin accessibility of HCC, leading to changes in gene expression levels. This study provides conclusive evidence that C. sinensis infection alters the epigenetics of HCC.
Project description:Our previous studies indicated that long-term B-toxicity was mainly limited to leaves of Citrus species; alternations of cell wall structure in vascular bundles were involved in tolerance to B-toxicity. Here, miRNAs and their expression pattern were first identified from B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves with high-throughput sequencing in order to identify miRNAs that might be involved in tolerance to B-toxicity. Results: 51 (23 conserved and 28 novel) miRNAs in C. grandis and 20 (6 conserved and 14 novel) in C. sinensis were differentially expressed after B-toxic treatment, respectively. Illumina sequencing results were validated by stem-loop qRT-PCR, and 82.5% qRT-PCR data coincided with those from direct sequencing. Among the differentially expressed miRNAs, miR395a and miR397a were the most significantly up-regulated in B-toxic C. grandis leaves, yet both were down-regulated in B-toxic C. sinensis ones. With modified 5’-RACE, four auxin response factor genes were confirmed as the real targets of miR160a, and two laccase (LAC) genes as those of miR397a, respectively. Localization of cell wall polysaccharides indicated that up-regulation of LAC4 resulted in secondary deposition of cell wall polysaccharides in regions near the pits of vessel elements in C. sinensis, and that down-regulation of both LAC17 and LAC4, via up-regulating their negative regulator miR397a, led to poorly developed vessel elements in C. grandis.Our findings demonstrated that miR397a played a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, of which both were responsible for secondary cell wall synthesis.
Project description:Background: Limited data are available on aluminum (Al)-toxicity-induced alterations of gene profiles in woody plants. Seedlings of Al-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated with nutrient solution containing 0 and 1.0 mM AlCl3â?¢6H2O. Thereafter, we investigated the Al-toxicity-induced alterations of transcriptomics in roots by RNA-Seq. Results: Using RNA-seq, we isolated 1293 (990) up- and 1377 (915) downregulated genes from Al-treated C. grandis (C. sinensis) roots. Clearly, gene expression was less affected by Al-toxicity in C. sinensis roots than in C. grandis ones. Several Al-toxicity-responsive genes homologous to known Al-tolerance genes: Al-activated malate transporter, multidrug and toxic compound extrusion (MATE), IRON REGULATED/ferroportin 1, sensitive to proton rhizotoxicity 1 and monogalactosyldiacylglycerol synthase were identified in citrus roots. However, Al-induced upregulation of all these genes was stronger in C. grandis roots than in C. sinensis ones except for MATEs. Genes related to signal transduction, and sulfur transport and metabolism might also play a role in the higher Al-tolerance of C. sinensis. Conclusions: This is the first comparative investigation of transcriptomic responses in Al-treated citrus roots. There were common and unique mechanisms for citrus Al-tolerance. These results provide a platform for further investigating the roles of genes possibly responsible for citrus Al-tolerance. Examination of mRNA levels in control and Al-treatment roots of C. grandis and C. sinensis with two biological replicates were generated by deep sequencing, using Illumina HiSeq 2000 device.
Project description:Clonorchis sinensis is a zoonotic parasite causing clonorchiasis associated with human diseases such as biliary calculi, cholecystitis, liver cirrhosis, and is classified as carcinogenic to humans for cholangiocarcinoma. MicroRNAs (miRNAs) are non-coding, regulating small RNA molecules essential for the complex life cycle of parasites and involved in parasitic infections. To identify and characterize miRNAs expressed in adult C. sinensis residing chronically in the biliary tract, we developed an integrative approach combining deep sequencing, bioinformatic predictions with stem-loop real-time PCR analysis. Here we report the use of this approach to identify and clone 6 new and 62,512 conserved C. sinensis miRNAs which belong to 284 families. There is strong bias on families, family members and sequence nucleotides in C. sinensis. Uracil is the dominant nucleotide, particularly at positions 1, 14 and 22, which were located approximately at the beginning, middle and the end of conserved miRNAs. There is no significant “seed region” at the first and ninth positions commonly found in human, animals and plants. Categorization of conserved miRNAs indicated that miRNAs of C. sinensis are still innovated and concentrated along three branches of the phylogenetic tree leading to bilaterians, insects and coelomates. There are two miRNA strategies in C. sinensis for its parasitic life: keeping a large category of miRNA families of different animals and keeping a stringent conserved seed region with high active innovation in other place of miRNA mainly in the middle and the end, which are perfect for the parasite to perform its complex life style and for host changes. The present study represents the first large scale characterization of C. sinensis miRNAs, which have implications for understanding the complex biology of this zoonotic parasite, as well as the miRNA studies of other related species such as Opisthorchis felineus and O. viverrini of human and animal health significance.