Project description:Female genital tract (FGT) diseases such as bacterial vaginosis (BV) and sexually transmitted infections are prevalent in South Africa, with young women being at an increased risk. Since imbalances in the FGT microbiome are associated with FGT diseases, it is vital to investigate the factors that influence FGT health. The mycobiome plays an important role in regulating mucosal health, especially when the bacterial component is disturbed. However, we have a limited understanding of the FGT mycobiome since many studies have focused on bacterial communities and have neglected low abundance taxonomic groups, such as fungi. To reduce this knowledge deficit, we present the first large-scale metaproteomic study to define the taxonomic composition and potential functional processes of the FGT mycobiome in South African reproductive-age women. We examined FGT fungal communities present in 123 women by collecting lateral vaginal wall swabs for liquid chromatography-tandem mass spectrometry.
Project description:Summary: Salmonella enterica serovar Typhimurium strain 14028s transcriptome response to lettuce medium (LM) and lettuce root exudates (LX) to minimal medium (MM). Purpose: Salmonella mRNA profile, when grown in different media was compared to minimal medium to reveal environment specific transcriptional changes. Methods: mRNA profiles were generated using Illumina HiSeq in triplicates. The sequences were analysed using Bowtie2 followed by Cufflinks.
2019-06-10 | GSE123152 | GEO
Project description:Cross-phytogroup assessment of foliar epiphytic mycobiome
Project description:A combined approach of evaluating ozone (O3)-caused foliar injury symptom and global gene expression profiling was used to identify potential genes associated with severity of injury on leaves of O3 (200 ppb)-fumigated (1, 12, 24, 48, and 72 h) two-week-old rice (cv. Nipponbare) seedling along with appropriate control. Foliar injuries were evaluated up to 72 h using both qualitative visual scale and quantitative RGB (red-green-blue) image analysis methods. The (R-G)/(R+G) was found as the optimal quantitative RGB parameter to assess the foliar injury. Large-scale transcript profiling of leaves identified 270 genes linked with foliar injury. Of these genes, the expression levels of 139 genes showed significant differences (P < 0.05) between leaves without and with injury symptoms. When a rigorous correlation test was applied on these genes for their expression changes and relative (R-G)/(R+G) parameters, the expression of 93 genes were found to increase with increased foliar severity up to 72 h, showing a positive, tight correlation between a subset of gene expression and commonly observed O3-triggerred symptom of foliar injury with correlation coefficient below -0.80. Of 93 genes, genes involved in metabolism (29%) formed a major functional category. Reconstruction of the metabolic networks with identified metabolic genes provided insight into the cellular responses such as photorespiration, biosynthesis of secondary metabolites, and detoxification. The O3 effect on these cellular responses has been previously reported based on physiological and biochemical studies, validating our approach used in this study to globally identify O3-responsive biomarkers tightly linked with foliar injury symptom. This study provides evidence for the presence of large number of genes associated with the foliar injury symptom than thought before, and could serve as a resource of potential biomarkers to study mechanisms of visible injury development by O3. Comparison between healthy rice seedling leaves and ozone treated (for 48 h and 72 h) rice seedling leaves was performed. Three biological replicates (5 leaves in each replicate; pooled) were used, and dye-swaped.
Project description:A combined approach of evaluating ozone (O3)-caused foliar injury symptom and global gene expression profiling was used to identify potential genes associated with severity of injury on leaves of O3 (200 ppb)-fumigated (1, 12, 24, 48, and 72 h) two-week-old rice (cv. Nipponbare) seedling along with appropriate control. Foliar injuries were evaluated up to 72 h using both qualitative visual scale and quantitative RGB (red-green-blue) image analysis methods. The (R-G)/(R+G) was found as the optimal quantitative RGB parameter to assess the foliar injury. Large-scale transcript profiling of leaves identified 270 genes linked with foliar injury. Of these genes, the expression levels of 139 genes showed significant differences (P < 0.05) between leaves without and with injury symptoms. When a rigorous correlation test was applied on these genes for their expression changes and relative (R-G)/(R+G) parameters, the expression of 93 genes were found to increase with increased foliar severity up to 72 h, showing a positive, tight correlation between a subset of gene expression and commonly observed O3-triggerred symptom of foliar injury with correlation coefficient below -0.80. Of 93 genes, genes involved in metabolism (29%) formed a major functional category. Reconstruction of the metabolic networks with identified metabolic genes provided insight into the cellular responses such as photorespiration, biosynthesis of secondary metabolites, and detoxification. The O3 effect on these cellular responses has been previously reported based on physiological and biochemical studies, validating our approach used in this study to globally identify O3-responsive biomarkers tightly linked with foliar injury symptom. This study provides evidence for the presence of large number of genes associated with the foliar injury symptom than thought before, and could serve as a resource of potential biomarkers to study mechanisms of visible injury development by O3.
Project description:Calcium deficiency response in liverwort, Arabidopsis and lettuce: (1) Marchantia polymorpha: M. polymorpha wildtype and Gβ-null mutant plants (Tak-1, gpb1-2) were grown in control liquid Yamagami media (2 mM Ca) for 6 days. For RNA-seq experiments, 6 day old gemmalings were transferred to calcium deficiency (0 mM Ca) media. Samples were collected at 48 h after the transfer. The transcriptomic profiles were collected from two independent batches. In total four biological replicates were used for each condition and each genotype for a total of 16 samples. (2) Arabidopsis thaliana: For Arabidopsis RNA-seq experiment, 6-day old seedlings grown on ½ strength MS media with sucrose were transferred to Yamagami media with 2 mM or 0 mM CaCl2 and treated for 7 days. (3) Lactuca Sativa: For lettuce RNA-seq, 4-day old seedlings grown on water agar (1%) were transferred to Yamagami media with 2 mM or 0.15 mM CaCl2 and treated for 7 days. In total four and three biological replicates were used for each condition for a total of 8 and 6 samples respectively for Arabidopsis and lettuce.
Project description:Leafy green vegetables, such as lettuce, have been increasingly implicated in outbreaks of foodborne illnesses due to contamination by Escherichia coli O157:H7. While E. coli can survive in soils, colonize plants, and survive on produce, very little is known about the interaction of E. coli with the roots of growing lettuce plants. In these studies a combination of microarray analyses and microbial genetics were used to gain a comprehensive understanding of bacterial genes involved in the colonization and growth of E. coli K12 on lettuce roots using a hydroponic assay system. Here we report that after three days of interaction with lettuce roots, 193 and 131 genes were significantly up-regulated and down-regulated at least 1.5 fold, respectively. Forty-five out of the 193 up-regulated genes (23%) were involved in protein synthesis and were highly induced. Genes involved in stress response, attachment and biofilm formation were up-regulated in E. coli when they interacted with lettuce roots under conditions of hydroponic growth. In particular crl, a gene regulating the cryptic csgA gene for curli production, was significantly up regulated. The crl, csgA and fliN mutants had a reduced capacity to attach to roots as determined by bacterial counts and by confocal laser scanning microscopy. Our microarray data showed that E. coli K12 increased the synthesis of proteins indicated that a dramatic change was induced in the physiology of the microorganism. This study indicates that E. coli K12 can efficiently colonize lettuce roots by using attachment and biofilm modulation genes and can readily adapt to the rhizosphere of lettuce plants. Further studies are needed to better characterize this interaction in pathogenic strains of this species. Escherichia coli MG1655 strains were grown in the lettuce rhizosphere for three days. Transcriptional profiling of E. coli was compared between cells grown with and without rhizosphere . Three biological replicates of each treatment were prepared, and six microarray slides were used.
Project description:Leafy green vegetables, such as lettuce, have been increasingly implicated in outbreaks of foodborne illnesses due to contamination by Escherichia coli O157:H7. While E. coli can survive in soils, colonize plants, and survive on produce, very little is known about the interaction of E. coli with the roots of growing lettuce plants. In these studies, a combination of microarray analyses and surface enhanced Raman spectroscopy (SERS) were used to gain a comprehensive understanding of bacterial genes involved in the colonization and growth of E. coli O157:H7 on lettuce roots and compared to E. coli K12 using a hydroponic system (HS) which we have reported in the previous studies. Using microarray, after three days of interaction with lettuce roots, 94 and 109 genes of E. coli O157:H7 were significantly up-regulated and down-regulated at least 1.5 fold, respectively. Only 8 genes were also found in the E. coli K12 up-regulated genes. No genes were found in the down-regulated genes clusters between those two strains. For E. coli O157:H7, forty out of the 94 up-regulated genes (43%) were involved in protein synthesis and were highly repressed compared to 40 out of 193 (23%) E. coli K12 up-regulated genes associated with protein synthesis. The wildtype of E.coli O157:H7 colonized two log CFU per root less compared to E. coli K12. Genes involved in biofilm modulation (bhsA and ybiM) were significantly up-regulated in E. coli O157:H7 and curli production (crl and csgA) were found important for E. coli K12 to attach to lettuce roots in the previous studies. BhsA mutant of E. coli O157:H7 was impaired in the colonization of lettuce roots. The SERS spectra of E. coli K12 and O157 controls (cells without interacting with roots) were very similar. The spectra of E. coli K12 and O157 exposed to the hydroponic system (HS) showed some differences in the nucleic acid, protein, and lipid regions compared with controls. The spectra of E. coli K12 HS cells exhibited significant differences compared to spectra from E. coli O157 HS cells in the RNA and protein regions. The overall band intensity of amide regions declined for E. coli O157 HS cells, while it increased for E. coli K12 HS cells. The intensity of the RNA bands of E. coli K12 HS cells were also found much higher than those of E. coli O157 HS cells. These findings were in agreement to our Microarray data. Our microarray and SERS data showed that E. coli K12 and O157:H7 behavior dramatically differently in colonizing on lettuce roots. Compared to K12, E. coli O157:H7 colonized less efficiently on lettuce roots. Escherichia coli O157:H7 strains were grown in the lettuce rhizosphere for three days. Transcriptional profiling of E. coli was compared between cells grown with and without rhizosphere . Three biological replicates of each treatment were prepared, and six microarray slides were used.
Project description:Bolting is a key process in the growth and development of lettuce (Lactuca sativa L.). High temperature can induce earlier bolting which decreases in both quality and production of lettuce. However, knowledge underlying lettuce bolting is still lacking. To better understand the molecular basis of bolting, a comparative proteomics analysis was conducted on lettuce stems in the bolting period induced by high temperature (33 °C) compared with a control (20 °C) using iTRAQ-based proteomics, phenotypic measures, and biological verifications. High temperature induced lettuce bolting, while control temperature did not. Of the 6656 proteins identified, 758 proteins significantly altered their expression level induced by high-temperature relative to the control, of which 409 were up-regulated and 349 down-regulated. Proteins with abundance level change were mainly involved in photosynthesis, carbohydrate metabolism, stress response, hormone synthesis, and signal transduction. These differential proteins were mainly enriched in pathways associated with photosynthesis and tryptophan metabolism involving in auxin (IAA) biosynthesis. Among the differentially expressed proteins associated with photosynthesis and tryptophan metabolism were up-regulated. Moreover, in gibberellin (GA) biosynthesis pathway, 10 of main enzymes of P450 were up-regulated. Proteins related to SAUR and GRP, implicated in IAA and GA signal transduction were up-regulated, and the phosphorylation and ubiquitination related proteins regulating IAA and GA signal transduction were also induced. These findings indicate that a high temperature enhances the function of photosynthesis, IAA and GA synthesis and signal transduction to promote the process of bolting, which is in line with the physiology and transcription levels of IAA and GA metabolism. Our data provide a first comprehensive dataset for gaining novel understanding of the molecular basis underlying lettuce bolting induced by high temperature. It is potentially important for further functional analysis and genetic manipulation for molecular breeding to breed new cultivar of lettuce to restrain early bolting, which is vital for improving vegetable quality.