Project description:The widespread use of electricity raises the question of whether or not 50 Hz (power line frequency in Europe) magnetic fields (MFs) affect organisms. We investigated the transcription of Escherichia coli K-12 MG1655 in response to extremely low-frequency (ELF) MFs. Fields generated by three signal types (sinusoidal continuous, sinusoidal intermittent, and power line intermittent; all at 50 Hz, 1 mT), were applied and gene expression was monitored at the transcript level using an Affymetrix whole-genome microarray. Bacterial cells were grown continuously in a chemostat (dilution rate D = 0.4 h-1) fed with glucose-limited minimal medium and exposed to 50 Hz MFs with a homogenous flux density of 1 mT. For all three types of MFs investigated, neither bacterial growth (determined using optical density) nor culturable counts were affected. Likewise, no statistically significant change (fold-change > 2, P ≤ 0.01) in the expression of 4,358 genes and 714 intergenic regions represented on the gene chip was detected after MF exposure for 2.5 h (1.4 generations) or 15 h (8.7 generations). Moreover, short-term exposure (8 min) to the sinusoidal continuous and power line intermittent signal neither affected bacterial growth nor showed evidence for reliable changes in transcription. In conclusion, our experiments did not indicate that the different tested MFs (50 Hz, 1 mT) affected the transcription of E. coli.
Project description:We recently revealed that myeloid master regulator PU.1 directly represses metallothionein (MT)-1G through its epigenetic activity, but the functions of MT-1G in myeloid differentiation remain unknown. To clarify this, we established MT-1G-overexpressing acute promyelocytic leukemia NB4 (NB4MTOE) cells, and investigated whether MT-1G functionally contributes to all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Real-time PCR analyses demonstrated that the inductions of CD11b and CD11c and reductions in myeloperoxidase and c-myc by ATRA were attenuated in NB4MTOE cells. Since G1 arrest is a hallmark of ATRA-induced NB4 cell differentiation, we observed a decrease in G1 accumulation, as well as decreases in p21WAF1/CIP1 and cyclin D1 inductions, by ATRA in NB4MTOE cells. Nitroblue tetrazolium (NBT) reduction assays revealed that the proportions of NBT-positive cells were decreased in NB4MTOE cells in the presence of ATRA. Microarray analyses showed that the changes in expression of several myeloid differentiation-related genes (GATA2, azurocidin 1, pyrroline-5-carboxylate reductase 1, defensin-4, C-X3-C motif receptor 3, matrix metallopeptidase -8, S100 calcium-binding protein A12, neutrophil cytosolic factor 2 and oncostatin M) induced by ATRA were disturbed in NB4MTOE cells. Collectively, overexpression of MT-1G disturbs the proper differentiation of myeloid cells. The present study provides evidence that expression analysis of MT-1G in acute promyelocytic leukemia patients may be a good prediction marker to estimate the efficacy of ATRA. Cell culture and generation of MT-1G-overexpressing cells: To generate MT-1G-overexpressing cells and their control cells, the MT-1G expression vector and its parental pcDNA 3.1/myc-His(-) version A vector (Invitrogen) were transfected using a CLB-Transfection device (Lonza, Basel, Switzerland). NB4 clones stably transfected with the vectors were isolated by limiting dilution and selection with 400 µg/ml of neomycin in RPMI (Gibco BRL, Rockville, MD) containing 10% heat-inactivated fetal bovine serum (HIFBS). Cells were cultured under 5% CO2 at 37°C in a humidified atmosphere. Microarray analyses: MT-1G-overexpressing (NB4MTOE) cells and their control cells were seeded at a density of 1×105 cells/ml and treated with 1 µM all-trans retinoic acid (ATRA). The cells were harvested after 72 h and total cellular RNA was isolated from control (NB4pcDNA4, 6, 7) cells and NB4MTOE (NB4MT22, 23, 25) cells using an RNA Mini Purification Kit (Qiagen, Miami, FL) according to the manufacturer’s protocol. Aliquots containing 10 µg of RNA from each sample of control cells were mixed and used as controls. Similarly, 10 µg of RNA from each sample of NB4MTOE cells were mixed and used as NB4MTOE cells. The samples were subjected to microarray analyses using a CodeLink Human 54K Whole Genome Bioarray (Filgen, Nagoya, Japan).
Project description:BACKGROUND: Mitochondrial (mt) heteroplasmy can cause adverse biological consequences when deleterious mtDNA mutations accumulate disrupting ‘normal’ mt-driven processes and cellular functions. To investigate the heteroplasmy of such mtDNA changes we developed a moderate throughput mt isolation procedure to quantify the mt single-nucleotide variant (SNV) landscape in individual mouse neurons and astrocytes In this study we amplified mt-genomes from 1,645 single mitochondria (mts) isolated from mouse single astrocytes and neurons to 1. determine the distribution and proportion of mt-SNVs as well as mutation pattern in specific target regions across the mt-genome,2. assess differences in mtDNA SNVs between neurons and astrocytes, and 3. Study cosegregation of variants in the mouse mtDNA. RESULTS: 1. The data show that specific sites of the mt-genome are permissive to SNV presentation while others appear to be under stringent purifying selection. Nested hierarchical analysis at the levels of mitochondrion, cell, and mouse reveals distinct patterns of inter- and intra-cellular variation for mt-SNVs at different sites. 2. Further, differences in the SNV incidence were observed between mouse neurons and astrocytes for two mt-SNV 9027:G>A and 9419:C>T showing variation in the mutational propensity between these cell types. Purifying selection was observed in neurons as shown by the Ka/Ks statistic, suggesting that neurons are under stronger evolutionary constraint as compared to astrocytes. 3. Intriguingly, these data show strong linkage between the SNV sites at nucleotide positions 9027 and 9461. CONCLUSION: This study suggests that segregation as well as clonal expansion of mt-SNVs is specific to individual genomic loci, which is important foundational data in understanding of heteroplasmy and disease thresholds for mutation of pathogenic variants.
Project description:Pyruvate fermentation pathway and energetics of Desulfovibrio alaskensis strain G20 under syntrophic coculture and fermentative monoculture conditions Expression data for Desulfovibrio alaskensis strain G20 grown in chemostats on pyruvate under respiratory conditions (sulfate-limited and pyruvate-limited monoculture, dilution rate 0.047 and 0.027 h-1), fermentative conditions (monoculture, dilution rate 0.036 h-1), and syntrophic conditions (coculture with Methanococcus maripaludis or Methanospirillum hungatei, dilution rate of 0.047 and 0.027 h-1)